中文 |

Newsroom

Charge-density-wave Induces Electronic Nematicity in Kagome Superconductor

Feb 24, 2022

In a study published in Nature, a research team led by Prof. CHEN Xianhui, WU Tao and WANG Zhenyu from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences found the key evidence for phase transition in a kagome superconductor CsV3Sb5. At a low temperature, the team observed a transition from charge-density-wave (CDW) order to electronic nematicity which was firstly described by a three-state Potts model. 

After its previous research on triple-Q modulation of kagome superconductors and the unusual competition between superconductivity and charge-density-wave order, the research team made another progress in discovering new states of electronic nematicities. The researchers discovered that the triple-Q charge density wave state would evolve into a thermodynamically stable electron nematic phase before entering the superconducting state, and they managed to determine the transition temperature to be 35 Kelvin. 

It is noteworthy that the electronic nematicity the team recently found was disparate from the nematicity in high-temperature superconductors (HTS). The electronic nematicity in HTS is the Ising type with Z2 symmetry; in contrast, the nematic phase found in CsV3Sb5 had Z3 symmetry. This particular state is theoretically described by the three-state Potts model, thus it is also called Potts nematic phase. Interestingly, this novel nematicity was also observed recently in bilayer corner graphene system. 

The discovery of this phase transition not only demonstrated a novel electronic nematicity, but provided fundamental experimental evidence for further understanding of the competition between superconductivity and CDW order in kagome systems. Besides, the findings of this study also cast new light on the understanding of pair density wave (PDW) state in HTS. 

 

Superconductivity in kagome state caused by triple-Q CDW order (Image by NIE Linpeng’s team) 

Contact

Jane FAN Qiong

University of Science and Technology of China

E-mail:

Charge-density-wave-driven electronic nematicity in a kagome superconductor

Related Articles
Contact Us
  • 86-10-68597521 (day)

    86-10-68597289 (night)

  • 86-10-68511095 (day)

    86-10-68512458 (night)

  • cas_en@cas.cn

  • 52 Sanlihe Rd., Xicheng District,

    Beijing, China (100864)

Copyright © 2002 - Chinese Academy of Sciences