中文 |

News Updates

A new method to extract protein from bone

Aug 02, 2007

    Elucidating the bone proteome is essential for understanding normal bone physiology as well as diseases such as osteoporosis. However, the best way to extract the necessary proteins for proteomic analysis has been a bone of contention among researchers. Because bone is mineralized and almost solid, classical protein extraction methods cannot be applied efficiently. In a recent issue of Journal of Proteome Research, an efficient method to extract proteins from bone for proteomic analysis has been invented by a research team led by ZOU Hanfa at the CAS Dalian Institute of Chemical Physics, and co-workers from the Shanghai Tissue Engineering Research and Development Center, and Suzhou University.

    Most bone proteomic studies have used in vitro systems such as cultured osteoblasts and osteoclasts. However, these systems are unlikely to recapitulate the in vivo protein expression of bone cells, which are normally embedded in a hydroxyapatite matrix. Other researchers have attempted to extract proteins from bone by finely grinding it, a very labor-intensive process. Furthermore, bone pulverization tends to extract large amounts of highly abundant structural proteins such as collagens and proteoglycans, which can overwhelm the detection of lower-abundance proteins.

    Zou and co-workers extracted proteins from dog skull by demineralizing bone fragments in 1.2 M hydrochloric acid. Bone proteins were extracted sequentially by using three different lysis buffers for a total of four bone extracts (including the acidic extract from the demineralization). The demineralization process removes calcium and other minerals from the bone tissue and dissolves the mineral matrix while keeping most of the organic matrix intact. According to Zou, "the removal of the mineral matrix exposes the cells in the bone, which facilitates extraction of proteins. In contrast to the pulverization of bone, our approach is very simple and allows high-efficiency protein extraction." Compared with bone pulverization, the demineralization protocol extracted ~1.3× more total protein.

    The researchers used a shotgun proteomics approach to identify the proteins extracted from bone. The proteins were digested with trypsin, and the resulting peptides were separated by 2D LC. Then, MS/MS analysis was used to identify the peptides and their corresponding proteins. The researchers identified 2479 unique proteins from the four bone extracts. Of these, 816 unique proteins were assigned with high confidence after the identification of at least two peptides. Using this more stringent identification criterion, the researchers reported a false-positive rate of 0.48%. "This is the first large-scale proteomic analysis of bone tissue using the shotgun approach," says Zou. "The four-step sequential protein extraction protocol is able to exhaustively extract proteins from bone for comprehensive proteome analysis."

    The shotgun proteomics approach was essential for developing the method of protein extraction by bone demineralization. The strongly acidic conditions used for bone demineralization are likely to degrade proteins, which is a major concern for conventional protein analysis techniques. If proteins are degraded into fragments by acid, they cannot be separated and identified by methods that operate at the protein level, such as 2DE. Zou says, "Thanks to the emergence of shotgun proteomics, protein degradation is no longer a problem, because separation and identification take place at the peptide level."

    Little overlap was found among the four protein extracts from the sequential extraction protocol; this indicates that the steps are complementary. The largest proportion of proteins (40.5%) were acid-soluble and were extracted by the 1.2 M hydrochloric acid in the bone demineralization step. Most collagen proteins and proteoglycans were not among the top 10 peptides; this surprised the researchers, because bone pulverization extracts large amounts of these proteins. The unusually low yield of structural proteins helped the analysis, because the lower-abundance proteins could be detected. Zou notes that the "collagen was converted to insoluble bone matrix gelatin during the demineralization with hydrochloric acid, which may explain why not much collagen-series protein was extracted. We're not sure why not much proteoglycan was detected." (Source: Journal of Protein Research)
Contact Us
  • 86-10-68597521 (day)

    86-10-68597289 (night)

  • 86-10-68511095 (day)

    86-10-68512458 (night)

  • cas_en@cas.cn

  • 52 Sanlihe Rd., Beijing,

    China (100864)

Copyright © 2002 - Chinese Academy of Sciences