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Copper oxide superconductors continue to fascinate the com-
munities of condensed matter physics and material sciences 
because they host the highest ambient-pressure supercon-
ducting transition temperature and unconventional electronic 
behaviour that are not fully explained1–3. Searching for univer-
sal links between the superconducting state and its normal 
metallic state is believed to be an effective approach to eluci-
date the underlying mechanism of superconductivity. One of 
the common expectations for copper oxide superconductors is 
that a metallic phase will appear after the superconductivity 
is entirely suppressed by chemical doping4–8 or the applica-
tion of a magnetic field9. Here we report the first observa-
tion of a quantum phase transition from a superconducting 
state to an insulating-like state as a function of pressure in 
Bi2Sr2CaCu2O8+δ (Bi2212) superconductors with two CuO2 
planes in a unit cell for doping below, at and above a level that 
achieves the highest transition temperature. We also find the 
same phenomenon in related compounds with a single CuO2 
plane as well as three CuO2 planes in a unit cell. This appar-
ently universal phenomenon poses a challenge for achieving a 
unified understanding of the mechanism of high-temperature 
superconductivity.

Although a huge body of experimental work has been reported for 
copper oxide (cuprate) superconductors since they were discovered 
more than thirty years ago10,11, the correlation between the super-
conducting state and its normal state or the neighbouring ground 
state is still widely debated2,6,12–14. By changing the chemical makeup 
of interleaved charge-reservoir layers, electrons can be added to or 
removed from the CuO2 planes, resulting in the suppression of the 
antiferromagnetic insulating state of the parent compound2. As the 
doping level reaches a critical value, superconductivity appears and 
its transition temperature (Tc) grows to a maximum on doping to an 
optimal one, then declines for higher doping and finally vanishes 
at the maximum doping level2,4,7,9,15. It is important to recognize 
that once the superconducting state is completely suppressed by 
chemical doping, the material undergoes a quantum phase transi-
tion from a superconducting state to a metallic state16–18. However, 
detailed experimental studies of the breakdown of the supercon-
ducting state in cuprates are still lacking, and they may be crucial for  

understanding how the superconducting state melts into or emerges 
from its neighbouring ground states.

Pressure is an alternative method of tuning the superconductiv-
ity beyond the chemical doping or external magnetic field, and it 
can provide significant information on the evolution of supercon-
ductivity, electronic state and crystal structure without changing 
the chemical composition. On the other hand, it can also provide 
valuable assistance in the search for superconductors with higher 
values of Tc at ambient pressure by the substitution of smaller ions19. 
A notably successful application of this strategy leads to the discov-
eries of important cuprate- and Fe-based superconductors10,20,21. 
Therefore, high-pressure studies on superconductivity can not only 
help the search for new superconductors but also provide a deeper 
understanding of the correlation between the superconducting state 
and its neighbouring normal or ground state22–26. To reveal how the 
superconducting state or non-superconducting state develops—a 
central issue for understanding the high-Tc superconductivity in 
cuprates, we performed a series of high-pressure investigations by 
employing our newly developed state-of-the-art technique—com-
bined in situ high-pressure measurements of the resistance and 
alternating current (a.c.) susceptibility for the same sample at the 
same pressure. We studied samples that have been investigated 
broadly by a variety of methods24,27–31, namely, the under-doped 
(UD), optimally doped (OP) and over-doped (OD) Bi2Sr2CaCu2O8+δ 
(Bi2212) superconductors with two CuO2 planes in a unit cell.

Figure 1 shows the results of temperature versus in-plane resis-
tance at different pressures for the UD sample with Tc = 74 K (Fig. 
1a,d), the OP sample with Tc = 91 K (Fig. 1b,e) and the OD sample 
with Tc = 82 K (Fig. 1c,f). It is found that the onset Tc of these sam-
ples exhibits the same high-pressure behaviour: a slight increase ini-
tially and then a monotonous decrease on elevating pressure until it 
is not detectable. Subsequently, an unexpected insulating-like state 
appears at pressure (Pi) of 34.3 GPa for the UD sample, 39.9 GPa 
for the OP sample and 42.2 GPa for the OD sample. Further, the 
insulating-like behaviour appears when the pressure is higher than 
Pi (Fig. 1a–f), which is a grand surprise because one naively expects 
that by increasing pressure, the bandwidth should widen and the 
system should become more metallic. We repeated the measure-
ments on new samples and proved that the results are reproducible  
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(Supplementary Fig. 2). Moreover, we found that the transition 
from the superconducting state to an insulating-like state is revers-
ible when the pressure is released. As shown in Supplementary Fig. 
5, the superconductivity with a zero-resistance state reappears in the 
sample released from the insulating-like state and a metallic nor-
mal state appears. In addition, our careful inspection on the sample 
recovered from 41.6 GPa, by a scanning electronic microscope, 
demonstrates that no crack is found (Supplementary Fig. 4). These 
results not only exclude the possibility that the insulating-like state 
is associated with some pressure-induced cracks but also provides 
a reasonable explanation on the reversible superconducting transi-
tion with a zero-resistance state.

The combined high-pressure measurements of a.c. susceptibility 
and in-plane resistance were performed for the three kinds of sam-
ples mentioned above. The superconducting transitions of the sam-
ples detected by a.c. susceptibility can be clearly identified by the 
onset signal of the deviation from the almost-constant background 
on the high-temperature side (Fig. 2, blue plots) and the plunge of 
resistance to zero (Fig. 2, red plots). On compression to 34.3 GPa for 
the UD sample, 39.9 GPa for the OP sample and 42.2 GPa for the 
OD sample, all their resistances show an insulating-like behaviour 
(Fig. 2d,h,l, red plots) and also no diamagnetic signal is captured by 

the a.c. susceptibility measurements (Fig. 2d,h,l, blue plots). These 
results reveal that the pressure induces a quantum phase transition 
from a superconducting state to an insulating-like state in all these 
superconductors.

We summarize the experimental results in the normalized pres-
sure–Tc phase diagram (Fig. 3, left), which is established on the basis 
of the pressure–Tc phase diagrams of the UD, OP and OD Bi2212 
samples (Fig. 3, right). The phase diagram for the three kinds of sam-
ples shows two distinct regions: the superconducting state (SC) and 
the insulating-like state (I), and demonstrates a universal quantum 
phase transition from the superconducting to the insulating-like 
states. It is shown that Tc displays a slight increase initially within a 
small pressure range, and then a continuous decrease with elevating 
pressure, in good agreement with the results reported previously32. 
At a critical pressure Pc and above (determination of Pc is shown in 
Fig. 3, inset), an insulating-like state emerges (Fig. 3, left) (details of 
the normalizing analysis are provided in Supplementary Fig. 11). It 
is worth noting that Pc for the superconductor–insulator transition 
increases with the increase in the doping level but does not follow 
the change in Tc (Fig. 3, top). These results demonstrate that the 
factors determining thermal stability (Tc) and quantum stability (Pc) 
of the superconducting ground state are not the same. These results 
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Fig. 1 | Temperature dependence of in-plane resistance for Bi2Sr2CaCu2O8+δ (Bi2212) at different pressures. a,d, Plots of temperature versus resistance 
with linear (a) and log (d) scales for the UD superconductor in the pressure range of 1.5–36.2 GPa. b,e, OP sample with linear (b) and log (e) scales 
in the pressure range of 0.7–41.2 GPa; the two-step superconducting transition demonstrates a crossover from two-dimensional to three-dimensional 
superconducting phases in the pressure range of 4.9–23.1 GPa, which is in good agreement with previous studies26. c,f, OD sample with linear (c) and log  
(f) scales in the pressure range of 1.0–49.0 GPa. The three kinds of samples display the same behaviour of an insulating-like state above pressure Pi.

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics


LettersNaTure PHySiCS

Tc(R )

Tc(a.c.)

0.3
UD (74 K)
P = 3.3 GPa

0.2

0.1

0

0.5
0.5

0.5

0.4 0.4 0.4

0.3 0.3 0.3

0.2 0.2 0.2

0.1 0.1 0.1

0 0 0

0.6
0.6

0.6
1.0

0

0.2

0.4

0.6

0.8 0.3

0.2

0.1

0
0

0.3

0.6

0.9

1.2

1.5 0.3

0.2

0

0.1

0.8

0.6

0.4

0.2

0.2

0.3

0.4

0.5

0.6

0.1

0 0

0.20.2

0.3
0.3

0.4
0.4

0.5
0.5

0.10.1

0000

0.20.2

0.30.3

0.4
0.4

0.5
0.5

0.10.1

0

0.2

0.3

0.4

0.5

0.1

20 40 60

Temperature (K)

80 100
0

0

0.1

0.10.2

R
/R

290 K

0.2
0.3

0.3

0.4

0.5

20 40 60

Temperature (K)

80 100 20 40 60

Temperature (K)

80 100 20 40 60

Temperature (K)

80 100
1.6

1.8

2.0

2.2

2.4

2.6

20 40 60

Temperature (K)

80 100 120
1.6

2.0

2.4

2.8

3.2

3.6

1.8

2.4

2.1

2.7

3.0

3.3

3.6

20 40 60

Temperature (K)

80 100 120
0

0.4

0.8

1.2

1.6

2.0

2.4 0.6

0.5

0.4

0.3

0.2

0.1

0

0.5

0.4

0.3

0.2

0.1

0
0

0.4

0.8

1.2

1.6

20 40 60

Temperature (K)

80 100 12020 40 60

Temperature (K)

80 100 120

20 40 60

Temperature (K)

80 100 120 20 40 60

Temperature (K)

80 100 120 20 40 60

Temperature (K) Temperature (K)

80 100 120 200 40 60 80 100 120

UD (74 K)
P = 12.7 GPa

UD (74 K)
P = 24.3 GPa

UD (74 K)
P = 34.3 GPa

OP (91 K)
P = 39.9 GPa

OP (91 K)
P = 30.1 GPa

OP (91 K)
P = 17.5 GPa

OP (91 K)
P = 0.7 GPa

OD (82 K)
P = 1.0 GPa

OD (82 K)
P = 9.1 GPa

OD (82 K)
P = 33.6 GPa

OD (82 K)
P = 42.2 GPa

∆
χ′

∆
χ′ ∆
χ′

∆
χ′

∆
χ′

∆
χ′

∆
χ′

∆
χ′

∆
χ′

∆
χ′

∆
χ′

∆
χ′

R
/R

290 K

R
/R

290 K

R
/R

290 K

R
/R

290 K

R
/R

290 K

R
/R

290 K

R
/R

290 K

R
/R

290 K

R
/R

290 K

R
/R

290 K

R
/R

290 K

Tc(R ) Tc(R )

Tc(R ) Tc(R ) Tc(R )

Tc(R )

Tc(R )

Tc(R )

Tc(a.c.) Tc(a.c.)

Tc(a.c.)
Tc(a.c.) Tc(a.c.)

Tc(a.c.) Tc(a.c.) Tc(a.c.)

a b c d

e f g h

i j k l
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raise two important questions: what is the factor that determines 
the value of Tc and what is the factor that controls the Pc value of 
the superconducting ground state? Further, how do they connect 
with each other? These questions are still open and call for further 
investigations from a broader perspective.

To know whether the quantum phase transition discovered in 
this study is a common phenomenon beyond the Bi2212 supercon-
ductors investigated, we conducted the same measurements on the 
Bi2Sr1.63La0.37CuO6+δ (Bi2201) superconductor with one CuO2 plane 
as well as the Bi2Sr2Ca2Cu3O10+δ (Bi2223) superconductor with three 
CuO2 planes in a unit cell. The same phenomenon is also found in 
these superconductors (Supplementary Fig. 3), indicating that the 
observed quantum phase transition is universal in bismuth-bearing 
cuprate superconductors, regardless of the doping level and number 
of CuO2 planes in a unit cell.

These results impact our knowledge about cuprate superconduc-
tors that after the superconducting state is destroyed, the sample 
should show a metallic state because pressure generally increases the 
bandwidth. To clarify the possible origin that leads to the destruction 
of the superconducting state and the emergence of an insulating-like 
state under pressure, we carried out more experiments.

First, we conducted the high-pressure synchrotron X-ray diffrac-
tion measurements at 50 K for the OD sample on 4W2 beamline 
at the Beijing Synchrotron Radiation Facility. Our results indicated 
that there is no structural phase transition in the range of pressures 
up to 43.1 GPa, except that the volume of the lattice is apparently 
compressed (Supplementary Fig. 9). These results ruled out the pos-
sibility that the quantum phase transition from superconducting to 
insulating-like states connects with a pressure-induced structural 
phase transition.

Second, we measured the magnetoresistance (MR) at 4 K for the 
compressed UD, OP and OD samples that host the insulating-like 
state. The magnetic field was applied perpendicular to the a–b 
plane of these samples. As shown in Fig. 4a–c, the MR values of 
all the samples exhibit a positive effect. These results are reminis-
cent of what has been seen in disordered superconducting films. 
When the film samples move into an insulating state (driven by the 
magnetic field) from a superconducting state, a positive MR value 
indicating a superconducting fluctuation state exists on increas-
ing the field33–35. These results lead us to consider that the positive 
MR effect may be a universal feature manifesting the existence of a 
superconducting fluctuation in the insulating state induced either 
by a magnetic field in the film samples or pressure in the bulk 
cuprates. As only a small MR value (of the order of 1%) is observed 
in the insulating-like state of our bulk cuprate superconductor, it 
implies that the superconducting fluctuation—if it indeed exists in 
these samples—should be weak.

Third, we performed the high-pressure Hall coefficient (RH) 
measurements for the OD sample (Fig. 4d; measurement details can 
be found in Supplementary Fig. 1) and find that RH(P) decreases 
remarkably with increasing pressure up to approximately 18 GPa. 
Because the Hall resistance versus magnetic field displays a linear 
behaviour in the pressure range investigated (Supplementary Fig. 6), 
a typical feature of the single-band system—the decrease in RH(P) 
below 18 GPa—ought to be associated with the enhancement in car-
rier density. However, RH remains almost unchanged for pressures 
ranging from approximately 18.0 to 35.0 GPa and then shows a slow 
increase from approximately 35.0 to 48.3 GPa. No apparent change 
in RH(P) at Pc = 39.5 GPa implies that the total density of charge car-
riers seems to remain in a steady state with a very slow change when 
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crossing quantum criticality. The reproducible result is also obtained 
in the Bi2201 superconductor (Supplementary Information).

It is noted that unlike the usual insulator, the low-temperature 
resistance in the insulating-like state rises way too slowly to be 
exponential. We attempted to fit the low-temperature resistance 
with exponential dependence and power law, but they failed 
(Supplementary Fig. 12). Slow rises of this kind have been found 
in low-temperature orthorhombic La2–xSrxCuO4, YiBa2Cu3O7–δ 
cuprates and La1–xMxOBiS2 (M = Ti or Th), which are perceived as 
fairly mysterious36–38.

There is, in fact, no precedence anywhere else for such a tran-
sition from a superconducting state to an insulating-like state, to 
the best of our knowledge. Therefore, some questions are naturally 
raised: why do itinerant superconducting electrons become local-
ized after the quantum phase transition and what is the exotic 
pathway that results in the quantum phase transition? All the 
above are attractive issues in searching for new physics behind the 
pressure-induced quantum phase transition from a superconduct-
ing state to an insulating-like state, which deserves further investi-
gation with other advanced experimental probes and sophisticated 
theoretical studies.
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