
Theoretical analysis of warping operators for non-ideal shallow
water waveguides

Haiqiang Niu,a) Renhe Zhang, and Zhenglin Li
State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190,
People’s Republic of China

(Received 28 October 2013; revised 17 May 2014; accepted 23 May 2014)

Signals propagating in waveguides can be decomposed into normal modes that exhibit dispersive

characteristics. Based on the dispersion analysis, the warping transformation can be used to

improve the modal separability. Different from the warping transformation defined using an ideal

waveguide model, an improved warping operator is presented in this paper based on the beam-dis-

placement ray-mode (BDRM) theory, which can be adapted to low-frequency signals in a general

shallow water waveguide. For the sake of obtaining the warping operators for the general wave-

guides, the dispersion formula is first derived. The approximate dispersion relation can be achieved

with adequate degree of accuracy for the waveguides with depth-dependent sound speed profiles

(SSPs) and acoustic bottoms. Performance and accuracy of the derived formulas for the dispersion

curves are evaluated by comparing with the numerical results. The derived warping operators are

applied to simulations, which show that the non-linear dispersion structures can be well compen-

sated by the proposed warping operators. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4883370]
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I. INTRODUCTION

In underwater acoustics, the normal mode theory is an

effective method to describe and analyze the acoustic field.

According to the normal mode theory,1,2 signals propagating

in a shallow water waveguide can be decomposed into a set

of modal components, which exhibit dispersive characteris-

tics. There are various studies based on the dispersive effect

of normal modes such as the analysis of dispersive

characteristics,3–6 source localization,7 dispersion re-

moval,8,9 and geoacoustic inversion.10–17 In most studies,

the modal characteristics are extracted from the time-

frequency representations (TFRs) to analyze the signals in

the time-frequency domain.18–20 In the time-frequency do-

main, each mode is described by the dispersion curve, which

can be used as an input for many applications. However, for

some ocean environments, modes are not always distinguish-

able with the conventional TFR methods. Recently, warping

operators have been introduced as signal-processing tools to

improve the modal separability.21–27 The warping transforms

are designed to compensate for the dispersive effect and iso-

late the modal components. Thus the warping transformation

facilitates the extraction of modal features.

The form of warping transformation is related to the dis-

persion of waveguides. The warping operators used in Refs.

21–24 were built based on an ideal waveguide with perfect

reflection boundaries. The Pekeris unitary operator intro-

duced by Touz�e et al.25 was built using an approximate dis-

persion formula for a Pekeris model and based on this

operator, frequency and time-frequency representations were

developed to filter modal components. In Ref. 25, the

dispersion relation for the Pekeris model was derived based

on the approximation vpvg ¼ c2
1, where vp and vg are phase

velocity and group velocity of acoustic waves and c1 is the

sound speed of sea water. Although this approximation holds

for the ideal waveguide, it has no theoretical base for the

Pekeris waveguide as stated in Ref. 25. Without using that

approximation, a more accurate dispersion formula for the

Pekeris waveguide was presented in Ref. 27 using the

BDRM theory,28,29 which provides the concise group veloc-

ity and modal attenuation formulas by using the reflection

coefficients and cycle distance of eigen-ray. Theoretically,

different waveguide models (e.g., ideal waveguide models or

Pekeris models) lead to different forms of warping operators,

although the warping operators derived from the ideal wave-

guide may be probably adapted to many low-frequency shal-

low-water scenarios.21,22 This leads to a question: In theory,

what is the form of the warping operator for the general

waveguides with arbitrary sound speed profiles of sea water

and fluid bottoms?

The key to the derivation of warping operators is to

obtain the dispersion relation (frequency f as a function of

time t). As an extension of Ref. 27, the dispersion relation

for the Pekeris case is discussed in more detail in this paper.

The whole frequency band is divided into two intervals

bounded by the Airy frequency for which both the dispersion

formulas are given. Further, the derivation of the warping

transformation for the general waveguide with a non-

isovelocity sound speed profile, which usually exists in mid-

latitude shallow water, is given by taking advantage of the

BDRM theory. Although it is difficult to obtain the exact

dispersion formula in a general waveguide, we can get an

approximate dispersion formula with adequate precision by

including the first-order terms of Taylor expansion. Then

the warping operators can be derived by integrating the
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dispersion formula. The performance of the proposed warp-

ing operator is verified for different waveguide models, and

the comparison of different warping operators is given when

there is an environmental mismatch in the warping model.

It should be stressed that the derived warping operators in

this paper are only adapted to the low-frequency shallow-

water waveguides in theory, i.e., the surface-reflected bottom-

reflected (SR-BR) modes. This will be discussed in detail in

the following sections. In addition, the bottom is assumed to

be a fluid medium where the shear waves are neglected.

The paper is organized as follows. Section II briefly

describes the BDRM theory. In Sec. III, the derivation of the

dispersion relation in shallow water is given. In this section,

the dispersion relation of Pekeris model derived from the

BDRM theory is first reviewed, followed by the case of an in-

homogeneous waveguide with a depth-varying sound speed

profile in sea water. Section IV presents the warping operators

for the general waveguide based on the dispersion formula

derived in Sec. III. Simulations are performed to validate the

proposed warping transformation. Finally, Sec. V provides the

summary.

II. BRIEF DESCRIPTION OF BDRM THEORY

The BDRM theory28 is one of the normal mode meth-

ods. The received pressure field, excited by a harmonic point

source after propagation in the waveguide, can be expressed

as a sum of WKBZ modes,28,30 the horizontal wavenumbers

of which satisfy the eigen-equation

2

ðfl2

fl1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðzÞ � l2

l

q
dzþ u1ðllÞ þ u2ðllÞ ¼ 2lp;

l ¼ 0; 1; 2;…; (1)

and

bl ¼
�lnjV1ðllÞV2ðllÞj

SðllÞ þ d1ðllÞ þ d2ðllÞ
; (2)

where

SðllÞ ¼ 2

ðfl2

fl1

lldzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðzÞ � l2

l

q ; (3)

d1ðllÞ ¼ �
@u1ðllÞ
@ll

����
x

; (4)

d2ðllÞ ¼ �
@u2ðllÞ
@ll

����
x

: (5)

In Eqs. (1) and (2), ll is the horizontal wavenumber, bl is the

modal attenuation, fl1 and fl2 are the upper and lower turning

or reflecting depths, respectively, and kðzÞ is the wavenum-

ber in sea water. V1ðllÞ and V2ðllÞ are the plane wave reflec-

tion coefficients on the upper boundary at depth fl1 and the

lower boundary at depth fl2. u1 and u2 are the phases of V1

and V2, respectively. SðllÞ in Eq. (3) is the cycle distance of

eigen-ray in sea water. d1ðllÞ in Eq. (4) and d2ðllÞ in Eq. (5)

are the beam displacements of the eigen-ray on the upper

and lower boundaries, which represent the corrections for

the ray length, i.e., SðllÞ þ d1ðllÞ þ d2ðllÞ constitutes the

ray length over one period.

As an example, Fig. 1 illustrates the eigen-ray expressed

by the BDRM theory in the shallow-water waveguide.

The modal group velocity can be expressed as28

vg
l ¼

SðllÞ þ d1ðllÞ þ d2ðllÞ
TðllÞ þ s1ðllÞ þ s2ðllÞ

; (6)

where

TðllÞ ¼ 2

ðfl2

fl1

kðzÞdz

cðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðzÞ � l2

l

q ; (7)

s1ðllÞ ¼
@u1ðllÞ
@x

����
ll

; (8)

s2ðllÞ ¼
@u2ðllÞ
@x

����
ll

: (9)

s1ðllÞ and s2ðllÞ are the time delays corresponding to the

beam displacements d1ðllÞ and d2ðllÞ at the upper and lower

boundaries. cðzÞ is the sound speed in sea water.

III. DISPERSION RELATION IN SHALLOW WATER

The dispersion relation is derived from the BDRM

theory. The analytic expressions of instantaneous frequency

(i.e., time-frequency dispersion curves) are obtained by com-

bining the eigen-equation [i.e., Eq. (1)] and the expression of

modal group velocity [i.e., Eq. (6)].

A. Dispersion relation for Pekeris waveguide

First, we focus on the case of a Pekeris waveguide.

Actually, an approximate formulation of the dispersion rela-

tion for the Pekeris model was given as Eq. (3) in Ref. 25.

However, as mentioned in Sec. I, this formulation is based

on the approximation vpvg ¼ c2
1. Different from that, a more

accurate dispersion formula derived from BDRM theory was

discussed in Ref. 27 for a Pekeris waveguide. For the

Pekeris waveguide, the group velocity of each mode has a

minimum at a certain frequency, which corresponds to the

Airy phase.1 In this scenario, the instantaneous frequency f

FIG. 1. Sketch illustrating eigen-ray in the shallow-water waveguide.
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is a multi-valued function of time t. Hence to obtain the solu-

tions, the whole frequency band is divided into two intervals

bounded by the Airy frequency (i.e., the frequency corre-

sponding to the Airy phase). Denote the cutoff frequency

and the Airy frequency by fcut and fAiry, respectively. Then

the frequency intervals can be represented by ½fcut; fAiry� and

½fAiry;þ1�. Actually the dispersion formula in Ref. 27 is

adapted to the frequency interval ½fAiry;þ1�. In the follow-

ing, dispersion equations are discussed for these two fre-

quency intervals, respectively.

1. Dispersion relation for frequency f > f Airy

Because the total energy of the received signal is domi-

nated by the components over the frequency interval

½fAiry;þ1�, this part of the group velocity curve is more im-

portant at long ranges. For a more detailed derivation of the

dispersion formula for this frequency band, the readers can

be referred to Ref. 27. Here we just briefly give the main

steps on the derivation.

For a homogeneous water column, the cycle distance in

Eq. (3) and the travel time of eigen-ray in Eq. (7) become

SðllÞ ¼ 2D
llffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
1 � l2

l

q (10)

and

TðllÞ ¼ 2D
k1

c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q ; (11)

where k1 and c1 denote the wavenumber and the sound speed

of sea water, respectively. D is the water depth. In this case,

the beam displacement d1ðllÞ and the time delay s1ðllÞ at

the sea surface vanish. For frequency f > fAiry, we have the

approximate relations d2ðllÞ � SðllÞ and s2ðllÞ � TðllÞ.
Thus the modal group velocity becomes

vg
l ¼

SðllÞþ d2ðllÞ
TðllÞþ s2ðllÞ

� SðllÞ
TðllÞ

1� s2ðllÞ
TðllÞ

þ d2ðllÞ
SðllÞ

� s2ðllÞ
TðllÞ

d2ðllÞ
SðllÞ

þ s2
2ðllÞ

T2ðllÞ

" #
:

(12)

Neglect the high-order terms in Eq. (12), and the modal

group velocity can be approximated by

vg
l �

SðllÞ
TðllÞ

ð1þ �Þ; (13)

where

� ¼ d2ðllÞ
SðllÞ

� s2ðllÞ
TðllÞ

: (14)

Inserting Eqs. (10) and (11) into Eq. (13) yields

vg
l ¼

llc1

k1

ð1þ �Þ: (15)

On the other hand, the modal group velocity can also be

written as

vg
l ¼

R

t
; (16)

where R is the distance between the source and the hydro-

phone, and t is the travel time of the wave-packet, satisfying

t � R=c1. By combining Eqs. (15) and (16), the horizontal

wavenumber can be written in terms of time t,

ll ¼
k1R

c1tð1þ �Þ : (17)

For the Pekeris waveguide, Eq. (1) can be written as

2D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q
� pþ ub ¼ 2ðl� 1Þp; l ¼ 1; 2;…;

(18)

where ub is the phase of the bottom reflection coefficient.

By inserting Eq. (17) into Eq. (18) and replacing k1 with

2pf=c1, the instantaneous frequency can be obtained,

f ðt0Þ ¼
2l� 1þ 2/bðt0Þ

p

� �
c1t0

4D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t02 � R

c1

� �2
s ; (19)

where t0 ¼ tð1þ �Þ and ubðtÞ ¼ �2/bðtÞ. Because the hori-

zontal wavenumber can be expressed as a function of time t,
the phase ub or /b can be also written in the time-dependent

form, which will be discussed in Sec. IV B. For further sim-

plification, Eq. (19) can be expanded as a function of t0 into

a Taylor series around t,

f ðtÞ ¼ f̂ ðtÞ þ f̂
0ðtÞ � t�; (20)

where

f̂ ðtÞ ¼
2l� 1þ 2/bðtÞ

p

� �
c1t

4D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � R

c1

� �2
s : (21)

In Eq. (20), f̂
0ðtÞ denotes the derivative of f̂ ðtÞ with respect

to the argument t. Note that the first term f̂ ðtÞ on the right

hand side of Eq. (20) is exactly the result obtained in Ref.

25. Actually the effect of beam displacement, which is the

second term on the right hand side of Eq. (20), was not con-

sidered in Ref. 25. To simplify Eq. (20), f̂
0ðtÞ and � should

be represented as functions of time t.

Denoting

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � ðR=c1Þ2

q
by nðtÞ to simplify the nota-

tion, we can obtain f̂
0ðtÞ as a function of time t,

f̂
0ðtÞ ¼ c1

4D
�

2l� 1þ 2/b

p
n3

R2

c2
1

þ
2

p
/0bt

n

2
4

3
5
; (22)

where the prime denotes the derivative with respect to t.
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Then the expression of � is derived as follows. From

Eq. (17), the horizontal wavenumber can be approximated by

ll �
k1R

c1t
¼ xR

c2
1t
: (23)

With Eqs. (5), (9), and (23), the beam displacement and the

time delay reduce to

d2ðllÞ ¼ �
2/0bt

ll

; (24)

s2ðllÞ ¼ �
2/0bR

llc
2
1

: (25)

Inserting Eqs. (10), (11), (23), (24), and (25) into Eq. (14)

yields

� ¼ �/0bn
3

k1D

c2
1

R2
: (26)

Combined with Eqs. (22) and (26), the second term of

Eq. (20) becomes

f̂
0ðtÞt� ¼ c1

4D

2

p
n/0b �

2

p
ð/0bÞ

2n2

k1D

c2
1t2

R2

" #
: (27)

Note that the second term on the right hand side of Eq. (27)

is generally a small quantity compared to the first term. So

we neglect the second term in Eq. (27) and write the final

result as

f ðtÞ ¼
2l� 1þ 2/bðtÞ

p

� �
c1t

4D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � R

c1

� �2
s

þ c1

4D

2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � R

c1

� �2
s

/0bðtÞ: (28)

Equation (28) is the derived more accurate dispersion

formula for the Pekeris waveguide over the frequency band

½fAiry;þ1� by taking account of the effect of bottom beam

displacement on the modal group velocity. For comparison,

the dispersion formula Eq. (3) in Ref. 25 is also rewritten as

follows:

f PekðtÞ ¼
2l� 1þ 2/bðtÞ

p

� �
c1t

4D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � R

c1

� �2
s : (29)

2. Dispersion relation for frequency f cut < f < f Airy

Generally, the frequency interval ½fcut; fAiry� is a very

narrow band for each normal mode, whereas the group ve-

locity varies rapidly over this band. Actually modes near cut-

off are weakly excited.1 Hence the contribution of this part

is insignificant at long ranges. Because this part of frequency

band is of minor interest, here we just present the final form

of the dispersion formula (the detailed derivation is shown in

Appendix A)

f ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l� 1Þ2

16D2
þ 1

4p2D2

q2
1

q2
2

1� R

c2t

� �2

c2R

c2
1t
� 1

� �2

0
BBBB@

1
CCCCA

1

c2
1

� 1

c2
2

� �
;

�
vuuuuuuut

(30)

where q1; c1 are the density and sound speed of water, and

q2; c2 represent the density and sound speed in bottom.

Note that the dispersion relation Eq. (30) is derived in

the absence of bottom absorption (see Appendix A). The

derived formula Eq. (30) will be validated by the simulation

in Sec. IV C 1.

B. Dispersion relation for a non-isovelocity
waveguide

Generally, the sound speed in shallow water is depth-

dependent. In this part, we present the generalized warping

operator adapted to the waveguide with a depth-varying SSP

in sea water. Because we are mainly concerned about the

long-range propagation, the dispersion relation for frequency

interval ½fcut; fAiry�, which is similar to that of the Pekeris

waveguide, is not given in this paper. In the following deri-

vation, the interval ½fAiry;þ1� will be our concerned fre-

quency band. As mentioned in Sec. I, only the SR-BR modes

are considered in the derivation, which means that the upper

turning depth fl1 ¼ 0 and the lower turning depth fl2 ¼ D.

As the sound speed of sea water is depth-dependent, we

represent the SSP as

cðzÞ ¼ �c½1� aðzÞ�; (31)

where aðzÞ denotes the quantity varying with depth (com-

monly, jaðzÞj � 1) and �c is the average sound speed, which

satisfies

�c ¼ 1

D

ðD

0

cðzÞdz: (32)

Actually, the expression of SSP may have various forms in

theory. However, the form in Eq. (31) proves convenient in

the derivation of dispersion relation. Combination of Eqs.

(31) and (32) yieldsðD

0

aðzÞdz ¼ 0: (33)

Equation (33) is very helpful in the following derivation.

The wavenumber of sea water can then be written as

kðzÞ ¼ x
cðzÞ �

�k½1þ aðzÞ�; (34)

where �k ¼ x=�c.
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For the case of depth-varying SSP, the integrals in

Eqs. (1), (3), and (7) can be simplified by a Taylor expan-

sion around the average sound speed. By expanding the

kernel of integral into a Taylor series and retaining

the first-order term, the cycle distance in Eq. (3) can be

written as

SðllÞ ffi 2

ðD

0

ll

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

2 � l2
l

q �
�k

�k
2 � l2

l

� �3=2
aðzÞ�k

2
4

3
5 dz

¼ 2
Dllffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

2 � l2
l

q � ll
�k

2

�k
2 � l2

l

� �3=2
�
ðD

0

aðzÞdz

2
64

3
75:

(35)

Taking account of Eq. (33), Eq. (35) can be simplified to

SðllÞ �
2Dllffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

2 � l2
l

q : (36)

According to the same approach as in the preceding text, the

expression of the travel time of eigen-ray can be obtained as

TðllÞ ffi 2

ðD

0

�k

�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

2 � l2
l

q þ
�k

2 � 2l2
l

�c �k
2 � l2

l

� �3=2
aðzÞ�k

2
64

3
75 dz

¼ 2D�k

�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

2 � l2
l

q : (37)

Equations (36) and (37) are the results by considering the

first-order approximation of the Taylor expansion. By taking

advantage of Eq. (33), the expressions of the cycle distance

and the corresponding travel time are concise.

Note that Eqs. (36) and (37) are of the same forms

as Eqs. (10) and (11). For the waveguide with a depth-

dependent profile, the average sound speed �c and wave-

number �k are included in Eqs. (36) and (37) instead of

the constant sound speed c1 and wavenumber k1 in homo-

geneous models. With the same procedures as Eqs.

(12)–(16), the horizontal wavenumber can be obtained in

terms of t,

ll ¼
�kR

�ctð1þ �Þ : (38)

For the SR-BR modes, the phase of the surface reflec-

tion coefficient is �p, and the phase of the bottom reflection

coefficient is ub ¼ �2/b. Then the eigen-equation can be

written as

2

ðD

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðzÞ � l2

l

q
dz ¼ ð2l� 1Þp� ub; l ¼ 1; 2;…:

(39)

Expanding the kernel of the integral into a Taylor series and

retaining the first-order term, then Eq. (39) can be rewritten

as

ðD

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

2�l2
l

q
þ

�k
2
aðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�k
2�l2

l

q
2
4

3
5dz¼ð2l�1Þ

2
p�ub

2
;

l¼1; 2;…: (40)

By taking advantage of Eq. (33), Eq. (40) reduces to

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

2 � l2
l

q
¼ ð2l� 1Þ

2
p� ub

2
: (41)

By inserting Eq. (38) into Eq. (41), we obtain the dispersion

relation for the waveguides with a depth-varying profile in

sea water,

f ðt0Þ ¼
2l� 1þ 2/b

p

� �
�ct0

4D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t02 � R

�c

� �2
s ; (42)

where t0 ¼ tð1þ �Þ. Equation (42) is also the same as

Eq. (19) in the form. Thus we expand Eq. (42) as a function

of t0 into a Taylor series around t and follow the same steps

as Eqs. (20)–(27). Then the final dispersion formula for the

waveguide with a depth-dependent SSP is

f ðtÞ ¼
2l� 1þ 2/b

p

� �
�ct

4D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � R

�c

� �2
s þ �c

4D

2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � R

�c

� �2
s

/0bðtÞ:

(43)

Equation (43) is the generalized dispersion formula in shal-

low water that includes the first-order approximations of Taylor

expansion. If the average sound speed �c in Eq. (43) is replaced

by the constant speed c1 in the Pekeris case, then the form of

Eq. (43) is exactly the same as that of Eq. (28). Actually, Eq.

(43) is also the generalization of the warping operators in Refs.

21–24 for the ideal waveguides. The dispersion relation of the

ideal waveguides can be derived from Eq. (43). For the ideal

waveguide with a pressure-release surface and a rigid bottom,

the phases of reflection coefficients at boundaries satisfy u1

¼ �p and ub ¼ �2/b ¼ 0. Then Eq. (43) reduces to

fidðtÞ ¼
ð2l� 1Þct

4D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � R

c

� �2
s : (44)

IV. WARPING OPERATORS AND SIMULATIONS

A. Warping operators

By the frequency integration method similar to that in

Ref. 25, the warping operators for our concerned frequency

interval ½fAiry;þ1� can be achieved from the derived disper-

sion relation, i.e., Eq. (43). To get the warping operators, the

instantaneous phase of the received signal should be calcu-

lated. Because the instantaneous phase is a nonlinear func-

tion of time t, the warping operators should be designed to

compensate for this nonlinearity. Because the instantaneous
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frequency is the derivative of the instantaneous phase, the

modal phase can then be obtained as

wlðtÞ ¼ 2p
ðt

R=�c

f ðuÞdu: (45)

Inserting Eq. (43) into Eq. (45) yields

wlðtÞ ¼
2p
4D

ð2l� 1Þ�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � R

�c

� �2
s2

4

þ 2

p
�c/b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � R

�c

� �2
s0

@
1
A
3
75: (46)

Then Eq. (46) can be rewritten as

wlðtÞ ¼ 2p fclnðtÞ þ vðtÞ½ �; (47)

where

fcl ¼
ð2l� 1Þ�c

4D
; (48a)

nðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � R

�c

� �2
s

; (48b)

vðtÞ ¼ �c/bðtÞnðtÞ
2Dp

: (48c)

Actually, fcl is the “equivalent cutoff” frequency of mode l
for an ideal waveguide, where the sound speed is �c. vðtÞ,
which is different from Eq. (12) in Ref. 25 in the form, repre-

sents the effect of bottom on the instantaneous phase of the

received signal.

As mentioned in Ref. 25, to obtain the linear modal

structures, the developed warping operator should be

designed to compensate for the two phase terms nðtÞ and

vðtÞ. Note that in Eq. (47), vðtÞ is independent of the mode

number l explicitly. It means that all the modes have the

same expression of vðtÞ. Thus to compensate for it, the mod-

ulation operator Mq is introduced as25

ðMqxÞðtÞ ¼ xðtÞei2pqðtÞ; (49)

where xðtÞ is the received signal and qðtÞ ¼ �vðtÞ. For the

sake of compensating for the first phase term fclnðtÞ in

Eq. (47), the time-warping operator Ww is given by25

ðWwxÞðtÞ ¼ jw0ðtÞj1=2x½wðtÞ�; (50)

where wðtÞ is the warping function, and satisfies

wðtÞ ¼ n�1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ R2

�c2

r
: (51)

By combining the operators Ww and Mq, the warping opera-

tor for the general shallow water waveguide can be con-

structed as

ðOw; qxÞðtÞ ¼ ðWwMqxÞðtÞ ¼
���� t

wðtÞ

����
1=2

x½wðtÞ�ei2pq½wðtÞ�:

(52)

Equations (47) and (52) are the instantaneous phase and

the corresponding warping operator, respectively. For the

ideal waveguide, it is easy to derive the corresponding warp-

ing operators. From Eq. (44), the instantaneous phase for an

ideal waveguide can be obtained as

widðtÞ ¼ 2pfcl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � R2

c2

r
; (53)

where the corresponding cutoff frequency is

fcl ¼
ð2l� 1Þc

4D
: (54)

Then the warping operator for ideal waveguides can be sim-

plified to

ðOwxÞðtÞ ¼ ðWwxÞðtÞ ¼
���� t

wðtÞ

����
1=2

x½wðtÞ�: (55)

Equation (55) is the warping operator used in Refs. 21–24.

After the warping transformation by Eq. (52) or (55), the

modal phases of the received signal become linear and each

mode is mapped into a pure frequency fcl.

B. Calculating the phase of bottom reflection
coefficient

The form of the warping operator has been obtained. To

implement the warping transformation, /b in vðtÞ [i.e., Eq.

(48c)] should be expressed as a function of time t. The phase

of the bottom reflection coefficient is related to the bottom

models. Different bottom models, e.g., semi-infinite homo-

geneous bottom or multi-layered media, lead to different

expressions of /b. In addition to the bottom models, the bot-

tom absorption also has an effect on the phase /b theoreti-

cally. Here we just briefly present the final results for a

homogeneous fluid bottom. For a more detailed derivation,

the reader is referred to Ref. 27. The case including the bot-

tom absorption is also rewritten in Appendix B.

Neglecting the bottom absorption, the phase of the bot-

tom reflection coefficient can be written as

ubðllÞ ¼ �2 arctan
q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2

q
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q
0
B@

1
CA; (56)

where k2 represents the wavenumber of the bottom half-

space, and q1, q2 are the densities of water and bottom,

respectively. By inserting Eq. (23) into Eq. (56), /b can then

be obtained as a function of t,

/bðtÞ ¼ arctan

q1c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc2

c2
1t

� �2

� 1

s

q2c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R

c1t

� �2
s

0
BBBBB@

1
CCCCCA: (57)

58 J. Acoust. Soc. Am., Vol. 136, No. 1, July 2014 Niu et al.: Warping operators in shallow water



In Eq. (57), c2 is the sound speed of bottom, and the time t satisfies R=c1 	 t 	 Rc2=c2
1.

If the bottom absorption is considered, the phase ub of the bottom reflection coefficient can be obtained by performing a

few steps of mathematical operations (see Appendix B):

ubðtÞ ¼ �arctan

2q1c1q2c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

c2
1t2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2

c2
1

R2

c2
1t2
� ð1� b2Þ

" #2

þ 4b2

vuut
0
B@

1
CA

1=2

cos
/1

2

q2
2c2

2 1� R2

c2
1t2

 !
� q2

1c2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2

c2
1

R2

c2
1t2
� ð1� b2Þ

" #2

þ 4b2

vuut

0
BBBBBBBB@

1
CCCCCCCCA
; (58)

where

cos
/1

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ 1

2

c2
2

c2
1

R2

c2
1t2
� ð1� b2Þ

c2
2

c2
1

R2

c2
1t2
� ð1� b2Þ

 !2

þ 4b2

2
4

3
5

1=2

vuuuuuuuut
:

(59)

In Eqs. (58) and (59), argument b satisfies a ¼ bk2, with a
being the absorption coefficient of bottom in nepers/meter.

C. Simulations

In Sec. III, we have obtained the dispersion relation for

waveguides with a constant SSP and a depth-varying SSP in

sea water, respectively. Subsequently, the warping operators

based on the dispersion formulas are derived in Sec. IV A. In

this part, simulations are performed to compare the derived

dispersion formulas with numerical results. Then the per-

formance of the warping transformation is examined for dif-

ferent waveguide models. Further, the comparison of

different warping operators is given when there is mismatch

between the simulated environment and the warping model.

1. Comparison of dispersion relation

The accuracy of the derived dispersion formulas is

examined by comparing with the numerical results calcu-

lated by the code KRAKEN.31 The dispersion formulas for a

Pekeris model and a non-isovelocity waveguide, respec-

tively, are investigated.

In Ref. 27, the comparison of dispersion relation is

investigated for the Pekeris model including bottom absorp-

tion. Different from that, two cases of the Pekeris waveguide

are considered here. In the first case, the bottom is modeled

in the absence of material absorption, and then in the second

case, the absorption is included. The environmental parame-

ters of the Pekeris waveguide are shown in Fig. 2.

For the first case without the bottom absorption, Fig. 3

shows the comparison of dispersion curves calculated by dif-

ferent methods. As shown in Fig. 3, the dispersion curves

computed by Eqs. (28) and (30), corresponding to the fre-

quency intervals ½fAiry;þ1� and ½fcut; fAiry�, respectively, are

closer to the KRAKEN solutions compared with the results of

Eq. (3) in Ref. 25. The phase /bðtÞ in Eq. (28) takes the form

of Eq. (57), which is derived from the model without bottom

absorption. Note that in Fig. 3, neglect of the contribution of

the beam displacement causes an error of arrival time over

the whole frequency band.

The second case, where the bottom absorption is

included in the Pekeris model, is investigated by choosing

different values of the absorption coefficient. In the simula-

tions, the absorption coefficient a is taken to be 0:002k2

Np/m (i.e., 0.109 dB=k, which is relatively small) and 0:02k2

Np/m (i.e., 1.09 dB=k, which is relatively large), respec-

tively. The corresponding dispersion curves are illustrated in

Figs. 4 and 5. It can be seen from Figs. 4 and 5 that the

results from Eqs. (28) and (58) agree well with the numerical

solutions by KRAKEN for the frequency band above the Airy

frequency. In addition, for comparison, Figs. 4 and 5 give

the results calculated by Eqs. (28) and (57), which are still in

good agreement with the numerical solutions over most fre-

quencies. Dispersion curves computed by Eq. (3) in Ref. 25

are also shown in Figs. 4 and 5. For the scenario with signifi-

cant absorption in the bottom (see Fig. 5), if the absorption

is neglected in the model [i.e., the phase /bðtÞ takes the form

of Eq. (57)], the errors in dispersion relation occur as the fre-

quency approaches the cutoff. However, due to the weak

energy near cutoff for long-range propagation, the effect of

bottom absorption on the warping transformation is limited.

Then the dispersion formula is investigated for the

waveguide in the presence of thermocline. The environment

FIG. 2. Environmental parameters of the Pekeris model.
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for simulation is depicted in Fig. 6. Different from the

Pekeris waveguide, the SSP of sea water, which was

recorded in one of the experiments, varies in depth. The dis-

persion curves above the Airy frequencies are illustrated in

Fig. 7. According to the environmental parameters, the nu-

merical solutions are calculated by KRAKEN, denoted by solid

lines in Fig. 7. The circles in Fig. 7 indicate the dispersion

curves computed by Eqs. (43) and (58). Figure 7 shows that

the modal arrival time calculated by the derived formula is

very close to the numerical results for most frequencies. The

relatively large error occurs in the high frequency band for

the low-order normal modes (see Fig. 7). It is because the

normal modes at high frequencies are not SR-BR modes in

the case of a negative gradient.

2. Performance of warping operators

To investigate the performance of warping transformation,

the derived warping operators are applied to the simulated sig-

nals propagating in waveguides. As mentioned in Sec. I, the

goal of warping operators is to transform the nonlinear modes

into the linear structures. To examine the validity of the derived

warping operators [i.e. Eqs. (52) and (55)], simulations for dif-

ferent waveguides (i.e. ideal waveguide, Pekeris waveguide

and non-isovelocity waveguide) are performed.

The environmental parameters in Fig. 8(a) are used to

model the ideal waveguide with a pressure-release surface

and a rigid bottom. Figure 8(b) shows the simulated signal

received by the hydrophone at the depth of 90 m in the

frequency band 20–200 Hz. The frequency spectrum of the

signal after transformation [i.e., Eq. (55)] is shown in Fig.

FIG. 5. Comparison of the dispersion relation calculated by different formu-

las in the presence of bottom absorption (absorption coefficient

a ¼ 1:09 dB=k) for Pekeris model. The curves correspond to modes 1–6,

respectively.

FIG. 6. Environment and geometry for the waveguide with a depth-

dependent SSP.

FIG. 3. Comparison of the dispersion relation calculated by different formu-

las in the absence of bottom absorption for Pekeris model. The curves corre-

spond to modes 1–6, respectively.

FIG. 4. Comparison of the dispersion relation calculated by different formu-

las in the presence of bottom absorption (absorption coefficient

a ¼ 0:109dB=k) for Pekeris model. The curves correspond to modes 1–6,

respectively.
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8(c). The dashed lines in Fig. 8(c) denote the theoretical

cutoff frequencies ð2l� 1Þc=4D [i.e., Eq. (54)] for this

ideal waveguide model. Figure 8(c) shows that after warp-

ing transformation, the location of each sharp peak

matches well the theoretical cutoff frequency ð2l� 1Þc=4D
of each mode.

For the Pekeris waveguide with a fluid bottom, the envi-

ronmental parameters are shown in Fig. 9(a). Figure 9(b)

exhibits the received signal in time domain with the

frequency from 20 to 200 Hz. It is observed from the fre-

quency spectrum in Fig. 9(c) that after the warping transfor-

mation, the energy of each mode is still concentrated upon

the pure frequency ð2l� 1Þc1=4D, which demonstrates that

the derived dispersion formula Eq. (28) and warping opera-

tor Eq. (52) are accurate for Pekeris model.

Finally, the performance of the warping operator is

examined for the general waveguide with a depth-varying

profile. The waveguide is modeled with a SSP measured in a

summer experiment. The configuration is shown in Fig.

10(a). The frequency band of the simulated signal is

20–200 Hz, and the broadband signal in time domain is given

in Fig. 10(b). Figure 10(c) shows the result of frequency

spectrum from the warping operator Eq. (52), which is

applied to the original received signal. By taking advantage

of Eqs. (48b), (48c), and (52), the phase of the received sig-

nal is transformed into linear structures successfully and the

location of each peak in frequency spectrum corresponds to

the theoretical frequency, i.e., Eq. (48a).

3. Model mismatch performance

For experimental data, there is always mismatch

between the warping model and the realistic ocean wave-

guide. Here we investigate the effect of model mismatch on

the performance of warping transformation. Note that the

warping transformation based on the ideal waveguide in

Refs. 21–24 is irrelevant to the bottom parameters, while the

warping operators based on non-ideal waveguides [i.e., Eq.

(17) in Ref. 25 and Eq. (52) in this paper] are not the case.

For the realistic environment, the sound speed of the bottom

is probably the primary mismatched parameter, and here it is

considered as the mismatched parameter in simulations.

FIG. 7. Comparison of the dispersion curves between the numerical solu-

tions and the results computed by Eqs. (43) and (58) for a non-isovelocity

waveguide. The curves correspond to modes 1–6, respectively.

FIG. 8. Warping transformation for the

ideal waveguide. (a) Environmental pa-

rameters of the ideal waveguide with a

pressure-release surface and a rigid bot-

tom. (b) Simulated signal in time do-

main received by the hydrophone at the

depth of 90 m with frequency band

20–200 Hz. (c) Frequency spectrum of

the warped signal, i.e., warping by

Eq. (55). The dashed lines denote the

theoretical cutoff frequencies

ð2l� 1Þc=4D, i.e., Eq. (54).
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In the following, for simplicity, the warping based on the

ideal waveguide21–24 is called ideal-warping, the warping

based on an approximate Pekeris waveguide25 is called

Pekeris-warping, and the methodology proposed in this paper

is called BDRM-warping. The comparison of these three dif-

ferent warping results is given in the following simulations.

Examples of Pekeris waveguide are taken to illustrate the

effect of bottom speed mismatch on the warping. The environ-

mental parameters of simulated Pekeris waveguide are shown

in Fig. 11, where the bottom sound speed is 1650 m/s.

First, the frequency spectra after the three different

warping transformations without model mismatch are given

FIG. 9. Warping transformation for

Pekeris waveguide. (a) Environmental

parameters of the Pekeris waveguide

with a pressure-release surface and a

fluid bottom. (b) Simulated signal in

time domain received by the hydro-

phone at the depth of 90 m with fre-

quency band 20–200 Hz. (c) Frequency

spectrum of the warped signal, i.e.,

warping by Eq. (52). The dashed lines

denote the “equivalent cutoff” frequen-

cies ð2l� 1Þc1=4D.

FIG. 10. Warping transformation for

the general waveguide with a depth-

varying profile in sea water. (a)

Environmental parameters of the

waveguide with a depth-varying profile

in sea water and a fluid bottom. (b)

Simulated signal in time domain

received by the hydrophone at the

depth of 90 m with frequency band

20–200 Hz. (c) Frequency spectrum of

the warped signal, i.e., transformation

by Eq. (52). The dashed lines denote

the “equivalent cutoff” frequencies

ð2l� 1Þ�c=4D, i.e., Eq. (48a).
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in Fig. 12(a). As shown in Fig. 12(a), compared with the

results of ideal-warping and Pekeris-warping, the spectrum

after BDRM-warping has sharper peaks and the locations of

these peaks are much closer to the theoretical frequencies

ð2l� 1Þc1=4D.

Then we consider the case where the bottom speed used

in warping model mismatches the simulated environment.

Now suppose that the values of bottom speed used in warp-

ing model are 1600 and 1700 m/s, respectively (i.e., the

errors are �50 and 50 m/s with respect to the simulated envi-

ronment). Figure 12(b) shows the frequency spectra of the

received signal with bottom speed c2 ¼ 1600 m/s in warping

model after ideal-, Pekeris-, and BDRM-warping, respec-

tively. Similarly, the results are shown in Fig. 12(c) when

the bottom speed is taken to be 1700 m/s in the warping

transformations. It is shown from Figs. 12(b) and 12(c) that

the spectra after BDRM-warping still have sharp peaks

around the theoretical frequencies when there is bottom

speed mismatch between warping model and the simulated

environment. The simulations demonstrate that the BDRM-

warping is a robust transformation with respect to the model

mismatch. Another advantage of the robustness is that we

can determine the mode number of the filtered mode because

each of the peaks in spectrum is close to the theoretical fre-

quency ð2l� 1Þc1=4D.

V. SUMMARY

The warping transformation provides an effective

method to separate the normal modes for impulsive sig-

nals. Different from the warping operator based on the

ideal model hypothesis, this study presents an improved

warping operator based on the BDRM theory, which can

be adapted to low-frequency signals in general shallow

water waveguides. To obtain the warping operators, the

dispersion formulas for different waveguide models are

derived from BDRM theory. By including the bottom

beam displacement and utilizing the approximation of

Taylor expansion, we obtain a more accurate dispersion

relation. After the transformation with the improved warp-

ing operators, the instantaneous phase of the received sig-

nal is linear in time.

The derived dispersion relation and the corresponding

warping operators are validated by numerical simulations.

By comparing with the numerical results, the dispersion for-

mulas are shown to be highly accurate. The corresponding

warping operators have been applied to the simulated signals

successfully. Each warped mode is an approximate sinusoid

corresponding to its cutoff or “equivalent cutoff” frequency.

Once the original signal is transformed into warped modes,

the conventional modal filtering techniques can be used to

extract the separate modes.
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FIG. 11. Environment and geometry for the simulated Pekeris waveguide

with the bottom speed 1650 m/s.

FIG. 12. (Color online) Comparison of the frequency spectra for different

warping transformations. (a) Warping transformations without model mis-

match (i.e., the bottom sound speed in warping model is 1650 m/s). (b)

Warping transformations with model mismatch. The bottom sound speed in

warping model is 1600 m/s with an error �50 m/s. (c) Warping transforma-

tions with model mismatch. The bottom sound speed in warping model is

1700 m/s with an error 50 m/s. In (a), (b), and (c), the dashed straight lines

denote the theoretical frequencies ð2l� 1Þc1=4D.
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APPENDIX A: DISPERSION RELATION FOR f cut < f < f Airy

For the homogeneous fluid-bottom half-space without

absorption, by taking account of the horizontal wavenumber

ll ! k2 (k2 is the bottom wavenumber) near the cutoff fre-

quency, the phase of bottom reflection coefficient can be

simply approximated by

ubðllÞ ¼ �2 arctan
q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2

q
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q
0
B@

1
CA

��
2q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2

q
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q : (A1)

By inserting Eq. (A1) into Eqs. (5) and (9), the beam

displacement and the corresponding time delay can be

obtained as

d2ðllÞ ¼
2q1

q2

� llffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q þ
ll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2

q
ðk2
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l Þ

3=2

2
64

3
75

� 2q1

q2

� llffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q (A2)

and

s2ðllÞ ¼
2q1

q2

� k2

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1 � l2
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l2

l � k2
2
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k2

1 � l2
l

q : (A3)

For the frequency f 2 ½fcut; fAiry�, the relations d2ðllÞ
� SðllÞ and s2ðllÞ � TðllÞ do not hold any more because

the beam displacement increases with decreasing frequency.

Thus Eq. (6) is used in the derivation in this scenario instead

of Eq. (12). Inserting Eqs. (10), (11), (A2), and (A3) into

Eq. (6) yields

vg
l ¼

Dll þ
q1

q2

llffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2

q
D

k1

c1

þ q1

q2

k2

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2

q ; (A4)

which together with Eq. (16) leads to

q1

q2

ll �
k2R

c2tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2

q ¼ D
k1R

c1t
� ll

� �
: (A5)

Equation (A5) can be further simplified using the approxi-

mate relation ll � k2. In Eq. (A5), by replacing ll by k2

except for the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2

q
and solving for ll, we

obtain

ll ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2 þ
q2

1

q2
2D2
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k2R

c2t
k1R
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� k2

0
BB@

1
CCA

2
vuuuuut : (A6)

Similar to the procedure in Sec. III A 1, inserting

Eq. (A6) into Eq. (18), and taking advantage of the relations

k1 ¼ 2pf=c1, k2 ¼ 2pf=c2, and ub � 0, the final instantane-

ous frequency can be obtained as

f ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l� 1Þ2

16D2
þ 1

4p2D2

q2
1

q2
2

1� R

c2t

� �2

c2R

c2
1t
� 1

� �2

0
BBBB@

1
CCCCA
,

1

c2
1

� 1

c2
2

� �
vuuuuuuut :

(A7)

APPENDIX B: THE PHASE OF BOTTOM REFLECTION
COEFFICIENT WITH BOTTOM ABSORPTION

The material absorption can be included by adding an

imaginary part to the sound speed so that c2 ¼ cr � ici.
1,31

Then the complex wavenumber of the bottom can be written as

K2 ¼
x
c2

¼ x
cr � ici

¼ x
cr þ ici

c2
r þ c2

i

: (B1)

Because generally ci � cr, Eq. (B1) can be simplified to

K2 ¼
x
cr
þ i

xci

c2
r

¼ k2 þ ia ¼ k2ð1þ ibÞ; (B2)

where a ¼ bk2 ¼ xci=c2
r denotes the absorption coefficient

of bottom in nepers/meter. Then the reflection coefficient of

bottom can be written as1

V ¼
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q
� iq1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2ð1þ ibÞ2

q
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q
þ iq1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

l � k2
2ð1þ ibÞ2

q

¼
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q
� iq1

ffiffiffiffiffiffiffiffiffiffi
Aei/1

p

q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q
þ iq1

ffiffiffiffiffiffiffiffiffiffi
Aei/1

p ; (B3)

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2

l � k2
2ð1� b2ÞÞ2 þ 4b2k4

2

q
and /1

¼ �arctan 2bk2
2=ðl2

l � k2
2ð1� b2ÞÞ

	 

. Denote M¼q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1�l2
l

q
,

N¼q1A1=2 sinð/1=2Þ, and P¼q1A1=2cosð/1=2Þ. Then Eq.

(B3) can be reduced to

V ¼ M2 � N2 � P2 � i2MP

ðM � NÞ2 þ P2
: (B4)

Thus the phase of the reflection coefficient of bottom can be

obtained as

ub ¼ �arctan
2q1q2A1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � l2
l

q
cos

/1

2
q2

2ðk2
1 � l2

l Þ � q2
1A

: (B5)
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Inserting Eq. (23) into Eq. (B5), we can then obtain the

phase of reflection coefficient with bottom absorption as a

function of time t, i.e., Eqs. (58) and (59).
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