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A Constrained MMSE LP Residual Estimator for
Speech Dereverberation in Noisy Environments
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Abstract—After revealing that both late reverberation and noise
are additive interference components in the residual domain, this
paper proposes to suppress these additive interference components
by using a constrained minimummean square error linear predic-
tion (LP) residual estimator, where the optimal filter can be ob-
tained by the generalized singular value decomposition. We pro-
pose to estimate the LP residuals for both late reverberation and
noise continuously, which is based on the non-VAD related noise
power spectral density estimator and the incessant late reverberant
spectral variance estimator. The non-intrusive objective measure
and the PESQ show that the proposed algorithm is better than
traditional LP residual-based algorithms and spectral subtraction-
based algorithms.

Index Terms—Additive, linear prediction residual, noise reduc-
tion, speech dereverberation.

I. INTRODUCTION

S PEECH dereverberation and noise reduction are extremely
important for hands-free speech communication systems,

especially when the desired talker is far away from the micro-
phone in a closed room [1]–[5]. This is because that both the
reverberation and the noise may seriously reduce speech intel-
ligibility and quality [6], [7]. In the last half-century, lots of re-
searchers have proposed numerous effective algorithms to sup-
press the late reverberant and the noisy components.
In fact, speech dereverberation and noise reduction can be

considered separately or together. Some researchers only deal
with the noise, where the reverberant components may be still
preserved even when the noise components have already been
removed thoroughly [8]–[22]. Some only handle the reverber-
ation in noise-free environments, where the noise components
may seriously degrade the performance of some dereverbera-
tion algorithms [23]–[30]. Others propose joint denoising and
dereverberation techniques to suppress both the noise and the
reverberant components [31], [32].
This paper focuses on linear prediction residual estimator

(LPRE) for speech dereverberation in noisy environments. To
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the best of our knowledge, the traditional LPRE-based algo-
rithms could not suppress the reverberation and the noise si-
multaneously. In [21] and [22], only the additive noise com-
ponents are removed. Yegnanarayana et al. propose to selec-
tively enhance the linear prediction (LP) residuals related to
the high signal-to-noise-ratio (SNR) regions in the noisy speech
[21], while Jin and Scordilis propose to estimate the LP resid-
uals by using a constrained optimization criterion [22]. In [28]
and [29], Yegnanarayana et al. suppress the LP residuals re-
lated to low signal-to-reverberant component ratio (SRR) re-
gions via entropy weighting and Hilbert envelope weighting,
respectively. The performance of these existing algorithms may
degrade when both the noise and the reverberation are presented
in practical situation.
Generalized singular value decomposition (GSVD) has

already been widely used in speech enhancement since Doclo
and Moonen proposed this method in 2002 [17]. Most of
GSVD-based algorithms are proposed to reduce the noise in the
time/frequency domain directly and others are applied to dere-
verberate the speech signal by estimating the transfer functions
from the desired talker to the multiple microphones. This paper
introduces a novel speech dereverberation and noise reduction
algorithm in the LP residual domain by using a constrained
minimum mean square error (MMSE) LPRE, which is based
on the fact that both late reverberation and noise are additive
components in the residual domain. To implement the con-
strained MMSE GSVD-based LPRE (CMMSE-GSVD-LPRE)
algorithm in practice, we need to estimate the LP residuals
continuously for both the reverberation and the noise, where
a non-VAD noise power spectral density (NPSD) estimator
and an incessant late reverberant spectral variance (LRSV)
estimator are proposed to achieve this goal.
The remainder of this paper is organized as follows. Section II

formulates the problem. Section III presents the proposed algo-
rithm, and the detailed procedure that estimates the LP residuals
for both late reverberation and noise is also presented in this
section. Experimental results and conclusions are presented in
Section IV and Section V, respectively.

II. PROBLEM FORMULATION

In noisy and reverberant environments, the microphone
signal can be given by:

(1)

where is the clean speech and is the transfer function
from the clean speech to the microphone. is the convolution
operator and is the noise in the microphone. For a causal
system, for should hold true.
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Eq. (1) can be rewritten as:

(2)

where and
are the direct-and-early reflection of the

speech and the late reflection of the speech, respectively.
defines the filter length of the early reflection. In this paper,
only the late reverberation and the noise are considered to be
removed from the microphone signal, while the early reflection
of the speech will still be preserved.
Similar to the noise, the late reverberation is also additive

component in the time domain. Therefore, the late reverberation
can be removed by using the same algorithms that are proposed
to suppress the noise, where the only problem is that the LRSV
is highly non-stationary [23].
By using the LP model, can be given by:

(3)

where is the order of the LP model and , with
are the AR coefficients of . is the LP residual of .
Assuming that and are the AR coefficients of and

, respectively. Using statistical room acoustics (SRA)
theory, Gaubitch et al. prove that holds true
[30]. Note that holds true if and only if
. In noisy environments, we use an approximate assumption:

(4)

where (4) is a common assumption that for the traditional
LP-based algorithms [5], [22], [21], [28], [29], [30], although
Huang et al. have already pointed out that the assumption in (4)
is not accurate enough [4, Ch. 46]. Note that, although may
not represent the all-pole filter of the clean speech accurately,
we still can use it to reconstruct the enhanced speech based on
the previous study results [21], [33]. Note that speech quality
may be improved if can be optimally estimated from
[34].
Using the same AR coefficients on each term of

the right side in (2), we have:

(5)

where , and are, respectively, the LP
residuals of , and . Traditional LP-based
algorithms could not remove and simultane-
ously via the same criterion, since the late reverberation and the
noise have significantly different influences on the LP residuals,
which can be found from the empirical studies presented in
[21] and [28].
To extend the traditional LP algorithms, this paper proposes

a CMMSE-GSVD-LPRE algorithm to suppress both the late re-
verberation and the noise. A detailed description of the proposed
algorithm is presented in the next section.

III. PROPOSED ALGORITHM

Before we describe the proposed CMMSE-GSVD-LPRE al-
gorithm, (5) is rewritten as:

(6)

where is the desired LP residual that needs
to be preserved, and is the inter-
ference LP residual that needs to be suppressed. There are three
parts in this section. In the first part, the CMMSE-GSVD-LPRE
algorithm is presented under the assumption that is a
priori. In the second part, is estimated frame by frame.
We summarize the implementation steps in the last part.

A. CMMSE-GSVD-LPRE Algorithm

For the th frame, the LP residuals are:

(7)

where means , and
for compact notation. is the frame shift and

with the frame length. We further define
in the paper for simplicity.

The Hankel-form sample matrices of the LP residuals in the
th frame can be given by:

...
. . .

...

(8)

where .
To estimate in the constrained MMSE sense, the

optimal filter is designed by:

subject to (9)

where ,
, and .

is the square of the th singular value of .
By using GSVD algorithm, can be given by:

(10)

where

(11)

(12)

and , where
, with , are determined by the constraint

in (9). and are two orthogonal matrices, and
is an invertible matrix. By using the same derivation method in
([19, (34)-(45)]), we have:

(13)

We propose to use a more aggressive suppression gain function
that was first proposed in [19, (44)], which is:

(14)
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where is a small positive value avoiding division by zero
and the typical value of ranges from 1 to 5, where the larger
value , the more amounts of reduction and speech distortion.
Note that although (14) has nearly the same expression as [19,

(44)]. There also exist two obvious differences. First, we don’t
assume that the interference LP residuals are white, while the
noise is assumed to be white in [19]. In other words, (14) can
deal with colored interference, which is more practical. Second,
the LP residuals are applied to obtain the optimal filter, while
the time-domain signals are directly used to obtain the optimal
filter in [19]. Many researchers have already pointed out that
noise reduction in the residual domain is better than that in the
time/frequency domain [21], [22]. This paper also show that
the late reverberation and the noise can be better suppressed
by using the residual domain than by using the time/frequency
domain.
As shown in (9)–(14), we needs to estimate the Hankel ma-

trix of the interference LP residuals. Since the late reverberation
is highly non-stationary, it is impossible to estimate the LRSV
in speech-absent segments even assuming that the noise is sta-
tionary. In the following part, we propose to estimate
in an efficient way.

B. Estimation of the Interference LP Residual

As mentioned above, we need to estimate the interference LP
residual frame by frame since the late reverberation is gener-
ally non-stationary and the noise may also be non-stationary.
Note that most of traditional algorithms use the speech-absent
segments to estimate the noise covariance matrix for noise re-
duction [17], [19], [22].
In this part, the NPSD and the LRSV are estimated sep-

arately frame by frame. After that, we use the overlap-add
method to obtain the time-domain interference signal and its
corresponding LP residual.
1) Estimation of the NPSD: As a matter of fact, both the

VAD-based and the non-VAD-based NPSD estimators can be
applied in estimating the NPSD. This paper proposes to use the
unbiased MMSE NPSD estimator, which is proposed by Gerk-
mann and Hendriks in [11], for its simplicity and accuracy. If
ignoring the computational load, the improved version of the
unbiasedMMSENPSD estimator can be used in practice, which
is proposed in [13]. We assume that the estimated NPSD in the
th frame is , where is the frequency bin index.
2) Estimation of the LRSV: Lots of LRSV estimators have

already been proposed in recent years [23]–[27], [32]. Some of
these LRSV estimators need to estimate the reverberation time
in the time/frequency domain [23], [25], [26]. Others do not
estimate any explicit parameters in estimating the LRSV [24],
[27]. This paper proposes to use the LRSV estimator proposed
by Wu and Wang in [24] for its simplicity and efficiency. We
assume that the estimated LRSV in the th frame is .
Note that the LRSV is estimated after removing the noise, which
could reduce the influence of the noise on estimating the LRSV.
3) Estimation of the Interference LP Residual: After esti-

mating the NPSD and the LRSV, the interference power spectral
density (IPSD) can be given by:

(15)

TABLE I
REAL TIME IMPLEMENTATION OF THE PROPOSED ALGORITHM

where . is the smoothed version of the raw
periodogram of in the th bin of the th frame, which is
applied to avoid overestimating the IPSD in practice.
The time-domain interference can be estimated by:

(16)

where is the FFT of in the th bin of the th
frame. To obtain for all values of , the overlap-add
method should be used frame by frame.
Assuming that the LP coefficients of in the th frame

are , with . The interference LP residual can
be given by:

(17)

where is an estimate of in the th frame.

C. Real Time Implementation

We summarize the proposed algorithm in Table I. This table
clearly indicates that the proposed algorithm is casual, which
can be implemented frame by frame.
We want to emphasize that the proposed CMMSE-GSVD-

LPRE algorithm can also be applied to reduce only the noise
or only the reverberation in a convenient way. If and

in (15), the proposed algorithm could only remove the
noise components.While and in (15), the proposed
algorithm could only remove the reverberant components. Com-
pared with the traditional LP residual-based algorithms, the pro-
posed CMMSE-GSVD-LPRE algorithm could suppress both
the noise and the reverberation in a unified criterion.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed algo-
rithm and compares it with the spectral subtraction (SS)-based
algorithm in [24] and the traditional LP residual-based algo-
rithm in [21]. The SS-based algorithm can easily be extended
to suppress both the noise and the reverberation, although Wu
and Wang only consider the reverberation in [24]. However, the
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TABLE II
COMPARISON RESULTS OF THE THREE ALGORITHMS INCLUDING THE SS, THE

LP-SD, AND THE CMMSE-GSVD-LPRE IN THE NOISE-FREE CASE

traditional LP-based noise reduction algorithm in [21] fails to
suppress the reverberation in most cases due to that the additive
noise and the reverberation have significantly different impacts
on spectral flatness characteristics [28]. In this paper, the algo-
rithm presented in [24] will be referred as SS, while the algo-
rithm presented in [28] will be referred as LP-SD, where SD is
short for speech dereverberation.
We evaluate the three algorithms in two different envi-

ronments including the noise-free, the reverberant and noisy
environments. The clean speech samples are taken from the
TIMIT database [35], while the noise samples are taken from
the NOISEX92 database [36]. To obtain the reverberant speech
signals, we need to generate the simulated room impulse re-
sponses (RIRs) using the image method [37]. In all the results,
the simulated rectangular room with dimensions (m)
is used and all six wall surfaces of this room have the same re-
flection coefficient. Based on Sabine’s reverberation equation,
different reverberation time can be achieved by properly
choosing the value of the reflection coefficient. To give quan-
titative comparisons, the speech to reverberation modulation
energy ratio (SRMR) is selected as a non-intrusive measure
since it can measure the perceived amount of reverberation effi-
ciently [38], [39], [40]. We also use the PESQ score to compare
the three algorithms for its high correlation with the perceived
amount of reverberation and its wide application [40], [41]. The
comparison results are presented in the following two parts.

A. Comparison in the Noise-Free Environment

By properly setting the value of the reflection coefficient, the
reverberation time ranging from 400 ms to 1000 ms is consid-
ered to evaluate the performances of the three algorithms. The
results are presented in Table II. As shown in this table, all of the
three algorithms can improve the values of the SRMR, while the
proposed algorithm has the largest values of the SRMR among
the three algorithms. The PESQ scores in Table II also show that
the proposed algorithm has the largest values in most cases.

B. Comparison in the Reverberant and Noisy Environment

In this part, both the noise and the reverberation are consid-
ered to show the validity of the proposed algorithm in the rever-
berant and noisy environment. The reverberation time

ms is a fixed value, and only the white Gaussian noise
is added to the reverberant speech in this paper for the space
limitation, where the input SNR ranges from - dB to 25 dB.
The comparison results are presented in Table III. The same as
Table II, the proposed CMMSE-GSVD-LPRE has the largest
values of the SRMR among the three algorithms. Notice should
be given that the LP-SD algorithm degrades its performance

TABLE III
COMPARISON RESULTS OF THE THREE ALGORITHMS IN

THE REVERBERANT AND NOISY ENVIRONMENT

Fig. 1. Waveforms and spectrograms of (a)(b) the clean speech, (c)(d) the re-
verberant and noisy speech with ms and the input
dB, (e)(f) enhanced by SS, (g)(h) enhanced by LP-SD, (i)(j) enhanced by the

proposed approach.

significantly especially when the input SNR is extremely low.
Table III also shows that the LP-SD could not improve the PESQ
score in noisy environments in all cases, while both the SS and
the proposed algorithms can improve the PESQ score.
By studying the periodograms of the enhanced speech sig-

nals by the three algorithms as shown in Fig. 1, we find that
the SS contains lots of audiblemusical noise components, while
the LP-SD could not remove the noise in most cases and only
the late reverberation is partially removed. Compared with the
LP-SD, the proposed CMMSE-GSVD-LPRE can remove both
the noise and the reverberation. Compared with the SS, the pro-
posed algorithm has less speech distortion and does not suffer
from serious musical noise problem.

V. CONCLUSION

This paper proposes to suppress both the noise and the re-
verberation in the residual domain, where a constrained MMSE
GSVD-LPRE algorithm is proposed to enhance the LP residual.
Experimental results verify the validity of the proposed algo-
rithm. Further work should concentrate on studying the influ-
ence of the NPSD estimator and the LRSV estimator on the pro-
posed algorithm to further improve its performance.
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