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By deriving the explicit expression of the probability density function (p.d.f.), this paper presents a sta-
tistical analysis of the power-level-difference-based dual-channel post-filter (PLD-DCPF) estimator. The
derivation is based on the joint p.d.f. of the auto-spectra of a two-dimensional stationary Gaussian pro-
cess with mean zero, where the theoretical expression is verified by numerical simulations. Using this
theoretical p.d.f. expression, this paper studies the impacts of the correlative parameters on the amount
of noise reduction and speech distortion. According to both the theoretical analysis results and the sim-
ulation results, four schemes are proposed to improve the performance of the traditional PLD-DCPF
estimator.
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1. Introduction

Multi-channel speech enhancement (MC-SE) often has much
better performance than single-channel speech-enhancement
(SC-SE), especially in dealing with non-stationary noise and
improving speech intelligibility, since more information such as
spatial information and directivity can be obtained and exploited
[1–6]. Some of the MC-SE algorithms combine a spatial filtering
with a post-filter estimator since the amount of noise reduction
by spatial filtering decreases significantly as the increasing of the
reverberation time [3, Ch.4], where a post-filter estimator is often
needed to further reduce the residual noise components. There are
mainly three kinds of post-filter estimators, which include the
coherence-based [5–9], the phase-based [10,11] and the power-
based estimators [12–14]. Generally, all of these post-filter estima-
tors perform better than the existing SC-SE algorithms in non-sta-
tionary environments.

Among these post-filter estimators, the power-level-difference-
based dual-channel post-filter (PLD-DCPF) estimator is a simple
and effective way for non-stationary noise reduction [13]. It as-
sumes that the powers of the desired speech signals at the two
microphones are quit different, while those of the noise signals
are nearly the same. Based on these assumptions, the PLD-DCPF
estimator uses the power level difference (PLD) of the observed
signals at the two microphones as a criterion for noise reduction,
where this post-filter estimator has a outstanding performance
on noise reduction when the speech and noise signals satisfy its
fundamental assumptions and all the parameters can be estimated
accurately. However, the two assumptions are difficult to meet in
real applications. First, the powers of the noise signals at the two
microphones may be different due to microphone mismatch. Sec-
ond, considering that both the speech and the noise signals are sto-
chastic, only an approximation of the parameters can be obtained
due to the limited number of available data. The power mismatch
of the noise in the two channels and the estimation errors of the
parameters may decrease the performance of the PLD-DCPF
estimator.

It becomes an attractive research topic to study the mecha-
nisms of the traditional post-filter estimators. Lots of researchers
have already made great efforts to study statistical properties of
several well-known post-filter estimators, such as the well-known
Zelinski post-filter estimator and the noise-field-coherence (NFC)-
based post-filter estimator, and so on. Statistical properties of
these post-filter estimators can provide some insight into their
performance under the stochastic model and can give us some
guidelines to improve their performance [15–17]. Zheng et al. have
studied statistical properties of the traditional coherence-based
post-filter estimators in isotropic noise field [17].

Although some improved versions have already been proposed
for the PLD-DCPF estimator [14], its statistical properties have not
been well studied until now. To the best of our knowledge, there
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are not any theoretical guidelines to improve the PLD-DCPF esti-
mator for real applications until now. Based on this fact, this paper
studies its statistical properties and reveals the influence of the
noise power mismatch and the estimation errors of the parameters
on its performance in theory. These analysis results can give us a
clear path to improve the performance of this post-filter estimator.
We derive the explicit expression of the probability density func-
tion (p.d.f.) of this post-filter estimator, where a key function for
this derivation is the joint p.d.f. of the auto-spectra of a two-
dimensional stationary Gaussian process [18]. Using the theoreti-
cal p.d.f. expression, we study the impacts of the noise power mis-
match and the estimation errors of the parameters on both noise
reduction (NR) and speech distortion (SD). Finally, four schemes
are proposed to improve the performance of the PLD-DCPF estima-
tor based on these analysis results.

The rest of this paper is organized as follows. Section 2 gives a
brief introduction of the PLD-DCPF estimator, and a detailed statis-
tical analysis of this post-filter estimator is presented in Section 3.
In Section 4, the theoretical results are verified by the simulation
results. Some potential applications are presented in Section 5. Dis-
cussions are given in Section 6.

2. Background

The PLD-DCPF estimator uses the PLD of the observed signals at
the two microphones as a criterion for noise reduction. There are
two assumptions in the traditional PLD-DCPF estimator. First,the
powers of the desired speech at the two microphones are quite dif-
ferent; Second, the powers of the noise at the two microphones are
nearly the same.

Let the received signals at the two microphones, respectively,
be:

y1 nð Þ ¼ s nð Þ þ d1 nð Þ; ð1Þ

and

y2 nð Þ ¼ h12 nð Þ � s nð Þ þ d2 nð Þ; ð2Þ

where s nð Þ denotes the desired speech at the first microphone.
h12 nð Þ is the acoustic transfer function (ATF) of the desired speech
between the two microphones. d1 nð Þ and d2 nð Þ are the noise re-
ceived by the first and the second microphones, respectively. The
frequency-domain of (1) and (2) can be, respectively, given by:

Y1 k; lð Þ ¼ S k; lð Þ þ D1 k; lð Þ; ð3Þ

and

Y2 k; lð Þ ¼ H12 k; lð ÞS k; lð Þ þ D2 k; lð Þ; ð4Þ

where Yi k; lð Þ and Di k; lð Þ, with i ¼ 1;2, are the short-time Fourier
transforms (STFTs) of yi nð Þ and di nð Þ, respectively. S k; lð Þ and
H12 k; lð Þ are the STFTs of s nð Þ and h12 nð Þ, respectively. k is the fre-
quency index and l is the frame index.

It is well-known that there are two assumptions in the original
PLD-DCPF estimator [13]. First, H12 k; lð Þj j should be much smaller
than 1 for all k and l. Second, EfjD1ðk; lÞj2g � EfjD2ðk; lÞj2g should
hold true for all k and l. Under these two assumptions, the PLD-
DCPF estimator can be derived from the Wiener filter, which is gi-
ven by [13, (21)]:

G k; lð Þ ¼ DPY k; lð Þj j
DPY k; lð Þj j þ h 1� H12 k; lð Þj j2

� �
PDs k; lð Þ

; ð5Þ

where h is a constant factor to adjust the noise reduction level of the
Wiener filter. When h ¼ 1, the PLD-DCPF estimator (5) equals to the
Wiener filter. PDs k; lð Þ is the estimated stationary noise power spec-
tral density (SNPSD) at the first microphone, and DPY k; lð Þj j is the
PLD of the received signals at the two microphones, which can be
given by:

DPY k; lð Þ ¼ PY1Y1 k; lð Þ � PY2Y2 k; lð Þ; ð6Þ

where PYiYi
k; lð Þ, with i ¼ 1;2, are the auto-spectra power spectral

density (PSD) estimation of Yi k; lð Þ, which can be estimated by a
recursive scheme:

PYiYi
k; lð Þ ¼ kyPYiYi

k; l� 1ð Þ þ 1� ky
� �

IYiYi
k; lð Þ; i ¼ 1;2; ð7Þ

where IYiYi
k; lð Þ ¼ Yi k; lð Þj j2 and ky is a constant smoothing factor.
3. Statistical analysis of the PLD-DCPF estimator

In order to study statistical properties of the PLD-DCPF estima-
tor, this section derives the p.d.f. of G k; lð Þ in (5) mathematically.
Notice should be given that the frequency index k is discarded in
the following sections when no confusion can arise.

3.1. The joint p.d.f. of the auto-spectra of a two-dimensional stationary
Gaussian process

Without loss of generality, we can assume that y1 nð Þ; y2 nð Þð Þ
is a two-dimensional stationary Gaussian process, then the real
and the imaginary part of Yi lð Þ, with i ¼ 1;2, are statistically
independent Gaussian random variables. Hence, the periodo-
grams of the auto-spectra of the noisy speech IYiYi

lð Þ follow the
v2 distributions with 2 degrees of freedom, which can be given
by [19, (5)]:

fIYi Yi
lð Þ xð Þ ¼ U xð Þ

r2
Yi

lð Þ
exp � x

r2
Yi

lð Þ

 !
; i ¼ 1;2; ð8Þ

where r2
Yi

lð Þ ¼ E IYiYi
lð Þ

� �
and U xð Þ denotes the unit step function. As

can be seen from (7), PYiYi
lð Þ are estimated by smoothing IYiYi

lð Þ over
time. Martin introduced the concept of equivalent degrees of free-
dom and verified that PYiYi

lð Þ follow the v2 distributions with 2L de-
grees of freedom, which can be given by [19]:

fPYiYi
lð Þ xð Þ ¼ LU xð Þ

r2
Yi

lð ÞC Lð Þ
xL

r2
Yi

lð Þ

 !L�1

exp � xL
r2

Yi
lð Þ

 !
; i ¼ 1;2; ð9Þ

where C �ð Þ is the complete Gamma function. L should be a positive
number that represents half of the equivalent degrees of freedom.
The relationship between L and ky can be derived by using [19,
(25) and (28)]:

L ¼ 1þ ky

1� ky

1
1þ 2

P1
m¼1k

m
y q mð Þ ; ð10Þ

where q mð Þ is given by [19, (20)]:

qðmÞ ¼
PN�1

n¼0 h nð Þh nþmMð Þ
� �2

P
n ¼ 0N�1h nð Þ

� �2 ; ð11Þ

where h nð Þ, with n ¼ 0; . . . ;N � 1, is the window function, N is the
FFT length and M is the frame shift. If the FFT length, the frame shift
and the window function are chosen beforehand, q mð Þ is only
determined by (11) that should be a positive number. Thus L is only
dependent on ky, which can be found from (10).

Define

a ¼ L � PY1Y1 lð Þ
� ��

d � r2
Y1

lð Þ
� �

; ð12Þ

and

b ¼ L � PY2Y2 lð Þ
� ��

d � r2
Y2

lð Þ
� �

; ð13Þ
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where d ¼ 1� c2; c2 ¼ E IY1Y2 lð Þ
� �		 		2= r2

Y1
lð Þ � r2

Y1
lð Þ

� �
is the magni-

tude-squared coherence (MSC) of Y1 lð Þ and Y2 lð Þ, with c the square
root of the MSC, IY1Y2 lð Þ ¼ Y1 lð ÞY�2 lð Þ is the cross-spectrum of Y1 lð Þ
and Y2 lð Þ. To be mentioned, a and b can be approximately regarded
as a form of the auto-spectra of y1 nð Þ and y2 nð Þ. Furthermore, the
joint p.d.f. of a and b can be derived from [18, (4.110)], which is gi-
ven by:

p a; bð Þ ¼
dLe� aþbð Þ abð Þ0:5 L�1ð Þ

cL�1C Lð Þ IL�1 2c
ffiffiffiffiffiffi
ab
p� �

; if a P 0 & b P 0

0; else

(
; ð14Þ

where 0 < c < 1. (14) could be regarded as the joint p.d.f. of the
auto-spectra of the two-dimensional stationary Gaussian process
y1 nð Þ; y2 nð Þð Þ.

3.2. The relationship between a; b and G lð Þ

Once we can reveal the relationship between a; b and G lð Þ, that
is to say, if we can use a and b to express GðlÞ, then the p.d.f. of G lð Þ
can be derived by using (14).

Let r2
Yi

lð Þ ¼ E Yi lð Þj j2
n o

, r2
Di

lð Þ ¼ E Di lð Þj j2
n o

and r2
S lð Þ ¼ E S lð Þj j2

n o
.

We further define the following five parameters:

m lð Þ ¼ r2
Y2

lð Þ=r2
Y1

lð Þ;

ms lð Þ ¼ r2
S lð Þ H12 lð Þj j2=r2

S lð Þ ¼ H12 lð Þj j2;
md lð Þ ¼ r2

D2
lð Þ=r2

D1
lð Þ;

n1 lð Þ ¼ r2
S lð Þ=r2

D1
lð Þ;

R lð Þ ¼ PDs lð Þ=r2
D1

lð Þ;

8>>>>>>><
>>>>>>>:

ð15Þ

where m lð Þ; ms lð Þ and md lð Þ measure the power ratio of the noisy sig-
nals, that of the desired speech signals and that of the noise signals
at the two microphones, respectively. n1 lð Þ is the signal-to-noise-ra-
tio (SNR) at the first microphone and R lð Þ defines the ratio of the
SNPSD to the NPSD at the first microphone. It should be pointed
out that all parameters in (15) are defined for each frequency and
we have already discarded the frequency index k before. In the
remainder of this paper, we will also discard the frame index l of
the five parameters defined in (15) when no confusion can arise.

Substituting (12), (13) and (15) into (5), we can rewrite (5) as
follows:

G lð Þ ¼ a� mbj j
a� mbj j þ h 1� H12 lð Þj j2

� �
RL

1�c2ð Þ n1þ1ð Þ

: ð16Þ

Define

C1 ¼ h 1� H12 lð Þj j2
� � RL

1� c2ð Þ n1 þ 1ð Þ ; ð17Þ

then (16) can be rewritten as:

G lð Þ ¼ a� mbj j
a� mbj j þ C1

: ð18Þ

As can be seen from (18), G lð Þ can be regarded as a function of a
and b, thus we can use the joint p.d.f. of a and b in (14) to derive the
p.d.f. of G lð Þ.

3.3. Derivation of the p.d.f. of G lð Þ

In order to derive the p.d.f. of G lð Þ, we need to derive the p.d.f. of
a� mbj j from (14) first, which can be seen in (18). For this purpose,

we define:

A ¼ a� mb; B ¼ aþ mb; ð19Þ

then the joint p.d.f. of A and B can be derived from (14) with the
help of [20, (8-8)], which is given by:
p A;Bð Þ ¼ dLe�
mþ1ð ÞBþ m�1ð ÞA

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A2

p L�1

2 2cð ÞL�1 ffiffiffi
m
p Lþ1

C Lð Þ
IL�1 c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A2

m

s0
@

1
A; ð20Þ

where 0 < c < 1.
The p.d.f. of A is the marginal p.d.f. of A and B, which can be ob-

tained by integrating B in (20), given by:

p Að Þ ¼ d Aj jð ÞLe�
m�1ð ÞA

2m

2 2cð ÞL�1 ffiffiffi
m
p Lþ1

C Lð Þ

�
Z þ1

1
e�

mþ1ð ÞB Aj j
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1

p L�1
IL�1 c Aj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1

m

s0
@

1
AdB: ð21Þ

Then the p.d.f. of Aj j ¼ a� mbj j can de obtained as:

p Aj jð Þ ¼ p Að Þ þ p �Að Þ;A P 0

¼
Z þ1

1
e�

mþ1ð ÞBA
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1

p L�1
IL�1 cA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1

m

s0
@

1
AdB

�
dAð ÞL e�

m�1ð ÞA
2m þ e

m�1ð ÞA
2m

� �
2 2cð ÞL�1 ffiffiffi

m
p Lþ1

C Lð Þ
;A P 0: ð22Þ

Using (19), we can rewrite (18) as follows:

G lð Þ ¼ Aj j
Aj j þ C1

: ð23Þ

Define that G lð Þ ¼ z, then the p.d.f. of G lð Þ can be obtained from
p Aj jð Þ in (22) directly with the help of [20, (5-5)], given by:

pðzÞ ¼

Rþ1
1 e�

mþ1ð ÞC1zB
2m 1�zð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1

p L�1
IL�1

cC1z
1�z

ffiffiffiffiffiffiffiffi
B2�1

m

q� �
dB

� dLCLþ1
1

2 2cð ÞL�1 ffiffimp Lþ1C Lð Þ

zL e
�

m�1ð ÞC1z
2m 1�zð Þ þe

m�1ð ÞC1z
2m 1�zð Þ

� �
1�zð ÞLþ2 ; if 0 6 z 6 1

0; else

8>>>>>><
>>>>>>:

ð24Þ

where 0 < c < 1.
Eq. (24) is the p.d.f. of the PLD-DCPF estimator G lð Þ, which will

be used to analyze both the NR and the SD of this post-filter esti-
mator in the following sections.

4. Simulations and discussion

By using Monte Carlo simulation results [21], this section veri-
fies the validation of the p.d.f. of the PLD-DCPF estimator GðlÞ in
(24), which is derived in Section 3. The Monte Carlo simulation
methods are a broad class of computational algorithms that rely
on repeated random sampling to obtain numerical results; typi-
cally one is used to obtain the distribution of an random process
by running repeated simulations many times. In this paper we
use the Monte Carlo simulation method to obtain the empirical
p.d.f. of GðlÞ, as the method can provide the following two benefits:
First, the empirical p.d.f. obtained by the Monte Carlo simulation
method can approach the theoretical p.d.f. of GðlÞwhen the amount
of simulation data is large enough; Second, the input signals are
generated by computer, so we can manually set all the parameters
that we need, which makes the analysis and the verification quit
simple.

For the simulation, the stationary noise, non-stationary noise
and the desired speech are assumed to follow the Gaussian distri-
butions. We want to emphasize that this assumption is only an
approximation since the distribution the desired speech is gener-
ally super-Gaussian. However, the quantitative results of this anal-
ysis can give us a deep insight into the performance of the
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traditional PLD-DCPF estimator. We apply this assumption to ver-
ify the validation of the p.d.f. of GðlÞ in (24). Under the Gaussian
assumptions, we generate the two-microphone signals as follows:

y1 nð Þ ¼ w1 nð Þ þ lw2 nð Þð Þu nð Þ þ w4 nð Þ þ lw5 nð Þð Þu n� N0ð Þ

þ
ffiffiffiffiffi
n1

p
w7 nð Þu n� 2N0ð Þ; ð25Þ

and

y2 nð Þ ¼
ffiffiffiffiffi
md
p

w1 nð Þ þ lw3 nð Þð Þu nð Þ þ w4 nð Þ þ lw6 nð Þð Þu n� N0ð Þð Þ

þ
ffiffiffiffiffiffiffiffiffi
msn1

p
w7 nð Þu n� 2N0ð Þ;

ð26Þ

where wi nð Þ, with i ¼ 1; . . . ;7, are uncorrelated white Gaussian
noise (WGN) processes with the variance r2

w1
¼ r2

w2
¼ r2

w3
;

r2
w4
¼ r2

w5
¼ r2

w6
and r2

w7
¼ 1þ l2
� �

r2
w1
þ r2

w4

� �
. N0 is a constant

positive integer that should be large enough to get sufficient
amount of data for the Monte Carlo simulation. The 7 WGN pro-
cesses can combine to generate the stationary noise component,
the non-stationary noise component and the desired speech compo-
nent for the two-microphone signals.

It should be pointed out that in the original PLD-DCPF estima-
tor, the SNPSD PDs lð Þ is estimated simply by a first order recursive
smoothing from the first several frames in silent interval, thus it
cannot cope with any change of the noise subsequently [13,
(18)]. For the simulation signals generated by (25) and (26), the
first N0 samples is stationary Gaussian series with the variance
1þ l2
� �

r2
w1

and can be regarded as only containing the stationary
noise component, since it could be tracked by the SNPSD estimator
of the PLD-DCPF estimator. The second N0 samples is also station-

ary Gaussian series with the variance 1þ l2
� �

r2
w1
þ r2

w4

� �
, which

can be seen as two uncorrelated Gaussian series added together,
one with the variance 1þ l2

� �
r2

w1
and the other 1þ l2

� �
r2

w4
. Con-

sidering that the SNPSD estimator of the PLD-DCPF estimator only
estimate the NPSD using the first several frames,
PDs lð Þ � 1þ l2

� �
r2

w1
holds true for all samples even after the time

index N0. Thus for the second N0 samples, the Gaussian series with
the variance 1þ l2

� �
r2

w1
could be regarded as stationary noise

component for the SNPSD estimator of the PLD-DCPF estimator,
and the Gaussian series with the variance 1þ l2

� �
r2

w4
could be re-

garded as the non-stationary noise component for this estimator,
because it cannot be tracked by the SNPSD estimator. Therefore,
the second N0 samples can be regarded as containing both the sta-
tionary and the non-stationary noise components as the increase of
the powers of the signals at the time index N0 could not be tracked
by the SNPSD estimator. For n > 2N0, there are three types of sig-
nals at the two microphones, which includes the desired speech
component, the stationary and the non-stationary noise
components.

Obviously, the parameters ms; md and n1 in (25) and (26) satisfy
the definition in (15). From (25) and (26), we obtain:

Cd1d2
¼ 1= 1þ l2� �

; ð27Þ

R ¼ r2
w1
= r2

w1
þ r2

w4

� �
; ð28Þ

c ¼
ffiffiffiffiffi
ms
p

n1 þ Cd1d2

ffiffiffiffiffi
md
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 þ 1ð Þ msn1 þ mdð Þ
p ¼

ffiffiffiffiffi
ms
p

n1 þ
ffiffiffiffiffi
md
p

= 1þ l2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ 1ð Þ msn1 þ mdð Þ

p ; ð29Þ

where Cd1d2 represents the square root of the MSC of the noise.
Using the two-microphone signals generated by (25) and (26) by
properly choosing the values of all the parameters, the theoretical
p.d.f. of G lð Þ can be verified by Monte Carlo simulation results.
H12 lð Þj j2 is replaced by ms when calculating the theoretical p.d.f.
and the empirical p.d.f. of G lð Þ. In all simulations, the signals are sam-
pled at 8 kHz and a non-overlapped 256-point STFT is used. L is set to
be 9 and Cd1d2 is set to be 0.5. As can be seen from (27), Cd1d2 is only
determined by l, so we can set 0 6 Cd1d2 6 1 to any values that we
need by properly choosing l. In this paper, Cd1d2 is set to a fixed value
since we find that Cd1d2 does not have significant impacts on the
performance of the traditional PLD-DCPF estimator if Cd1d2 – 1.

Fig. 1 shows the comparison results of the theoretical p.d.f. and
the empirical p.d.f. of G lð Þ. As can be seen from Fig. 1, the empirical
results fit quite well with the theoretical results, which proves that
(24) provides a good fit for the p.d.f. of G lð Þ. After verifying the the-
oretical p.d.f. of G lð Þ, we will use it to further study the impacts of
the parameters in (15) on the NR and the SD in the next section.
5. Applications

It can be seen from Sections 3 and 4 that there are total seven
parameters that have impacts on the distribution of the p.d.f. of
G lð Þ, which are Cd1d2 ; L; R, ms; md; n1 and the estimated ATF of the
desired speech between the two microphones. Obviously, these se-
ven parameters are all involved with the NR and the SD. The
parameter R can be regarded as the noise estimation accuracy since
the original PLD-DCPF estimator only estimates the stationary
noise. Therefore, R � 1 holds true in most cases, because the non-
stationary noise is often underestimated.

We want to emphasize that two assumptions have been made
in Sections 3 and 4. First, both the speech and the noise are as-
sumed to follow the Gaussian distributions. Second, the noise
and the speech are assumed to be independent identically distrib-
uted (i.i.d). It is well-known that the super-Gaussian distribution is
more suitable to model the speech. However, although the first
assumption is just an approximation, the analysis results could
also reveal the behavior of the PLD-DCPF estimator. The main rea-
son is that the modeling error is only a minor factor on the quali-
tative results. Based on these two assumptions, we use the WGN
processes in (25) and (26) to generate the empirical data to verify
the theoretical results.

5.1. Analysis of noise reduction

For noise only segments, we have ms ¼ 0 and n1 ¼ 0. The theo-
retical amount of NR can be given by:

NR ¼ �20 lg
Z 1

0
zp zð Þdz

� �
dB ð30Þ

where z ¼ G lð Þ is the PLD-DCPF estimator. Through the theoretical
analysis and the experiments, we find that the parameters Cd1d2

and L do not have significant impacts on the amount of NR. The cor-
responding results will no longer be presented in this paper due to
the space limit. Cd1d2 and L are set to fixed values in the following
sections, where we set Cd1d2 ¼ 0:5 and L ¼ 9 to study the impacts
of the two parameters R and md on the amount of NR. Notice should
be given that the tiny estimation error of the ATF H12 lð Þj j2 also has a
weak impact on the amount of NR, hence H12 lð Þj j2 is replaced by ms

in all the latter analysis.
Fig. 2(a) plots the NR versus different values of md, and Fig. 2(b)

plots the NR versus different values of R. As can be seen from Fig. 2,
the theoretical results fit quit well with the empirical results. Fig. 2
clearly show the impacts of R and md on the amount of NR. First, the
amount of NR has the highest value when md is close to 1, and de-
creases significantly as md goes far away from 1. Second, the
amount of NR decreases significantly as R decreases. From the re-
sults in Fig. 2, two remarks can be made. First, if the second
assumption, r2

D1
¼ r2

D2
, does not hold true, the PLD-DCPF estimator

reduces its amount of NR significantly. Second, only estimating the
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Fig. 2. (a) Noise reduction (NR) of G lð Þ versus md with R ¼ 1; R ¼ 0:5 and R ¼ 0:1; (b) noise reduction (NR) of G lð Þ versus R with md ¼ 1; md ¼ 0:5 and md ¼ 2. The solid line,
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Cd1 d2 ¼ 0:5; L ¼ 9; ms ¼ 0 and n1 ¼ 0 are used for both (a) and (b).
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SNPSD could not suppress non-stationary noise components com-
pletely. Therefore, two schemes should be used in practice to im-
prove the performance of the PLD-DCPF estimator. The first
scheme of this paper is that the NPSD mismatch at the two micro-
phones should be calibrated to make sure that md � 1 holds true.
The second scheme of this paper is that the non-stationary noise
component should be estimated.
5.2. Analysis of speech distortion

The theoretical amount of SD over frequency can also be calcu-
lated by (30). Cd1d2 ¼ 0:5 and L ¼ 9 are used unaltered for analyzing
the SD, since both of them have not significant impacts on the
amount of SD. Besides, H12 lð Þj j2 is replaced by ms due to the weak
impact of its estimation error on the amount of SD. Since
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Section 5.1 have already shown that the NPSD mismatch should be
calibrated beforehand and the non-stationary noise should be esti-
mated accurately, so md ¼ 1 and R ¼ 1 are directly used in analyz-
ing the SD. Thus, we only need to analyze the two parameters ms

and n1 on the impacts of the amount of SD.
Fig. 3(a) plots the SD versus different values of ms, and Fig. 3(b)

plots the SD versus different values of n1. As can be seen from Fig. 3,
the amount of the SD decreases as n1 increases, while the amount
of the SD increases as ms decreases, especially when n1 is not a large
value. Moreover, n1 has more impacts than ms on the SD. Based on
these analysis results, two additional schemes can be used to re-
duce the SD of the PLD-DCPF estimator. The third scheme of this
paper is that y2ðnÞ can be applied to suppress the coherent noise
component in y1ðnÞ adaptively to increase n1. Notice should be gi-
ven that md ¼ 1 does not still hold true after applying this adaptive
filtering scheme, so we need to calibrate the NPSD mismatch be-
fore applying the PLD-DCPF estimator. After calibrating the NPSD
mismatch, v s may become much smaller than before. The fourth
scheme of this paper is that we can use y1ðnÞ to eliminate the
speech component in y2ðnÞ to make sure that v s is much smaller
than 1 to reduce the speech distortion.

This section studies the impacts of several parameters on the
amount of NR and that of the SD. After that, four schemes are pro-
posed to improve the performance of the traditional PLD-DCPF
estimator.
6. Conclusion

This paper studies statistical properties of the traditional PLD-
DCPF estimator. We derives the p.d.f. of this post-filter estimator
under Gaussian distributions of both the speech and the noise.
After that, we discuss the relationship between the parameters
and the amount of the NR and that of the SD. Based on these anal-
ysis results, four schemes are proposed to improve the perfor-
mance of the traditional PLD-DCPF estimator. Further work
should concentrate on proposing practical and effective algorithms
to improve its performance, such as a simple NPSD calibration
algorithm, an efficient non-stationary NPSD estimation algorithm
and a robust adaptive filtering scheme.
Acknowledgements

This work was supported in part by National Science Fund of
China Under Grand Nos. 61201403 and 61302126.This work was
also supported by the tri-networks integration under No. KGZD-
EW-103-5(3).
References

[1] Brandstein M, Ward D. Microphone arrays: signal processing techniques and
applications. Berlin: Springer-Verlag; 2008.

[2] Loizou PC. Speech enhancement: theory and practice. New York: CRC Press;
2007.

[3] Benesty J, Makino S, Chen J. Speech enhancement. Berlin: Springer-Verlag;
2005.

[4] Zheng C, Zhou Y, Hu X, Li X. Speech enhancement based on the structure of
noise power spectral density. In: Proc Eur Signal Process Conf (EUSIPCO).
Aalborg, Denmark; August, 2010.

[5] Allen JB, Berkley DA, Blauert J. Multimicrophone signal-processing technique
to remove room reverberation from speech signals. J Acoust Soc Am
1977;62:912–5.

[6] Bouquin RL, Faucon G. Using the coherence function for noise reduction. IEE
Proc Commun Speech Vis 1992;139:276–80.

[7] Bouquin RL, Azirani AA, Faucon G. Enhancement of speech degraded by
coherent and incoherent noise using a cross-spectral estimator. IEEE Trans
Acoust Speech Signal Process 1997;5:484–7.

[8] Yousefian N, Loizou PC. A dual-microphone speech enhancement algorithm
based on the coherence function. IEEE Trans Acoust Speech Signal Process
2012;20:599–609.

[9] Yousefian N, Loizou PC. A dual-microphone algorithm that can cope with
competing-talker scenarios. IEEE Trans Acoust Speech Signal Process
2013;21:143–53.

[10] Liu C, Wheeler BC, O’Brien WD, Bilger RC, Lansing CR, Feng AS. Localization of
multiple sound sources with two microphones. J Acoust Soc Am
2000;108:1888–905.

[11] Shi G, Arabi P, Jiang H. Phase-based dual-microphone speech enhancement
using a prior speech model. IEEE Trans Acoust Speech Signal Process
2007;15:109–18.

http://refhub.elsevier.com/S0003-682X(14)00039-5/h0030
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0030
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0035
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0035
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0040
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0040
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0045
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0045
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0045
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0050
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0050
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0055
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0055
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0055
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0060
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0060
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0060
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0065
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0065
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0065
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0070
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0070
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0070
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0075
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0075
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0075


46 S. Wang et al. / Applied Acoustics 83 (2014) 40–46
[12] Cohen I, Berdugo B. Two-channel signal detection and speech enhancement
based on the transient beam-to-reference radio. In: Proc IEEE int conf on
acoust, speech, signal process (ICASSP). Hong Kong, China; May, 2003.

[13] Yousefian N, Akbari A, Rahmani M. Using power level difference for near field
dual-microphone speech enhancement. Appl Acoust 2009;70:1412–21.

[14] Jeub M, Herglotz C, Nelke C, Beaugeant C, Vary P. Noise reduction for dual-
micropone mobile phones exploiting power level difference. In: Proc IEEE int
conf on acoust, speech, signal process (ICASSP). Kyoto, Japan; March, 2012.

[15] Marro C, Mahieux Y, Simmer KU. Analysis of noise reduction and
dereverberation techniques based on microphone arrays with postfiltering.
IEEE Trans Acoust Speech Signal Process 1998;6:240–59.

[16] Zheng C, Zhou Y, Hu X, Li X. Two-channel post-filtering based on adaptive
smoothing and noise properties. In: Proc IEEE int conf on acoust, speech, signal
process (ICASSP). Prague, Czech Republic; May, 2011.
[17] Zheng C, Liu H, Peng R, Li X. A statistical analysis of two-channel post-filter
estimators in isotropic noise fields. IEEE Trans Acoust Speech Signal Process
2013;21:336–42.

[18] Goodman NR. On the joint estimation of the spectra, cospectrum and
quadrature spectrum of a two-dimensional stationary Gaussian process. Ph
D diss. Princeton Univ, Princeton, USA; 1957.

[19] Martin R. Bias compensation methods for minimum statistics noise power
spectral density estimation. Signal Process 2006;86:1215–29.

[20] Papoulis A. Probability, random variables, and stochastic processes. 3rd
ed. New York: McGraw-Hill, Inc; 1991.

[21] Landau DP, Binder K. A guide to Monte Carlo simulations in statistical
physics. Cambridge: Cambridge University Press; 2009.

http://refhub.elsevier.com/S0003-682X(14)00039-5/h0080
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0080
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0085
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0085
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0085
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0090
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0090
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0090
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0095
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0095
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0100
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0100
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0105
http://refhub.elsevier.com/S0003-682X(14)00039-5/h0105

	A statistical analysis of power-level-difference-based dual-channel post-filter estimator
	1 Introduction
	2 Background
	3 Statistical analysis of the PLD-DCPF estimator
	3.1 The joint p.d.f. of the auto-spectra of a two-dimensional stationary Gaussian process
	3.2 The relationship between ? and ? 
	3.3 Derivation of the p.d.f. of ? 

	4 Simulations and discussion
	5 Applications
	5.1 Analysis of noise reduction
	5.2 Analysis of speech distortion

	6 Conclusion
	Acknowledgements
	References


