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Discriminative pronunciation modeling using the MPE criterion

Meixu SONG†a), Jielin PAN†, Nonmembers, Qingwei ZHAO†, Member, and Yonghong YAN†, Nonmember

SUMMARY Introducing pronunciation models into decoding has been
proven to be benefit to LVCSR. In this paper, a discriminative pronuncia-
tion modeling method is presented, within the framework of the Minimum
Phone Error (MPE) training for HMM/GMM. In order to bring the pronun-
ciation models into the MPE training, the auxiliary function is rewritten
at word level and decomposes into two parts. One is for co-training the
acoustic models, and the other is for discriminatively training the pronun-
ciation models. On Mandarin conversational telephone speech recognition
task, compared to the baseline using a canonical lexicon, the discriminative
pronunciation models reduced the absolute Character Error Rate (CER) by
0.7% on LDC test set, and with the acoustic model co-training, 0.8% addi-
tional CER decrease had been achieved.
key words: automatic speech recognition, pronunciation models, discrim-
inative training, Mandarin conversational speech recognition

1. Introduction

Current LVCSR technology aims at transferring real-world
speech to sentence. Due to data sparsity, it is almost impos-
sible to find a sufficiently direct conversion between speech
and sentence. Therefore, this conversion is divided into
three parts, as show in Fig. 1: (a) the conversion between
speech feature vectors and subwords (phones for example)
described by Acoustic Models (AMs); (b) the conversion
between words and sentence described by Language Model
(LM); and (c) the conversion between subwords and word-
s described by a lexicon. We consider that a lexicon is
composed of three parts: words, pronunciations, and Pro-
nunciation Models (PMs). PMs contain the pronunciation
probabilities of each word in the lexicon. In many LVCSR
systems, the lexicon is hand-crafted, that usually means the
pronunciations are in canonical forms, and the probability
in PMs could be considered as constant 1. To automatically
learn a lexicon, earlier studies have explored the data-driven
pronunciation learning and PM training methods.

As to pronunciation learning, earlier work [1] present-
ed a discriminative pronunciation learning method using
phonetic decoder and minimum classification error criteri-
on. And previous work [2], [3] made use of a state-of-the-art
letter-to-sound (L2S) system based on joint-sequence mod-
eling [4] to generate pronunciations. Specifically for Man-
darin pronunciation learning, the pronunciation variants of
each constituent character in a word were enumerated to
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Fig. 1 The conversions between speech and sentence

construct a pronunciation dictionary in [5]. This method is
used to generate pronunciations for words in this paper, and
the implementation details will be described.

As to PM training, in [2], [3], a pronunciation mixture
model (PMM) was presented by treating pronunciations of
a particular word as components in a mixture, and the dis-
tribution probabilities were learned by maximizing the like-
lihood of acoustic training data. By contrast, in our work
we modify the auxiliary function of the standard MPE train-
ing [6] to incorporate PMs. By doing so, a discriminative
pronunciation modeling method using minimum phone er-
ror criterion is proposed, called MPEPM. In this method, the
acoustic models and pronunciation models are co-trained in
an iterative fashion under the MPE training framework.

In the experiment on two Mandarin conversational tele-
phone speech test sets, compared to the baseline using a
canonical lexicon, the proposed method has 1.5% and 1.1%
absolute decrease in CER respectively.

The rest of the paper is organized as follows: Section 2
gives a brief introduction of PMs in speech recognition. In
Section 3, a detailed derivation of incorporation of PMs into
MPE training is presented. Section 4 reports experimental
results, and Section 5 gives a conclusion of this paper.

2. Pronunciation Models

With PMs considered in speech recognition, the most likely
words sequence using Viterbi approximation is [1], [7]:

Ŵ = arg max
W

P(O|W)P(W)

� arg max
W,B

P(O|B)P(B|W)P(W) (1)

where O is the sequence of acoustic observations, W is a
sequence of hypothesized words, and B is the sequence of
possible pronunciations corresponding W. P(B|W) is cal-
culated by PMs. Suppose that PMs is context independent,
then P(B|W) can be written as:

P(B|W) = P(b1, . . . , bkr |wr
1, . . . , w

r
kr

) =
kr∏
j=1

P(b j|wr
j)

P(b j|wr
j) is the probability that the j-th word in the r-th word
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sequence with kr words, is pronounced as b j.

3. Incorporate PMs into MPE training

To train PMs from speech corpus, the possible pronuncia-
tions sequences for each training utterance are usually re-
quired. In [3], these are obtained by decoding the N-best
list of pronunciations. By contrast, the possible pronuncia-
tions sequences are already contained in lattices used in the
standard MPE training. Thus, the incorporation of PMs into
MPE training is investigated. The MPE objective function
is [6]:

FMPE =

R∑
r=1

∑
W Pλ(Or |W)P(W)A(W)∑

W Pλ(Or |W)P(W)
(2)

where A(W) represents the phone accuracy calculation func-
tion. To make Eq. (2) tractable, the auxiliary function of the
MPE objective function is:

HMPE(λ, λ′) =
R∑

r=1

Qr∑
q=1

γMPE
q

∣∣∣(λ=λ′) log P(q) (3)

with

γMPE
q =

∂FMPE

∂ log P(q)
= γq(cr(q) − cr

avg) (4)

where P(q) is the likelihood of the speech data aligned to
phone arc q, γq is the posterior probability of the phone arcs
q in current lattice, cr(q) is the average phone accuracy of
paths passing through the phone arcs q, and cr

avg is the av-
erage phone accuracy of all paths in the lattice of the r-th
training utterance [6].

To incorporate PMs, as in Eq. (1), P(O|W) is expanded
to P(O|B)P(B|W), then the MPE objective function is:

FMPE =

R∑
r=1

∑
W
∑

B Pλ(Or |B)P(B|W)P(W)A(W)∑
W Pλ(Or |B)P(B|W)P(W)

We rewrite auxiliary function (Eq. (3)) at word level
and incorporate pronunciation probability P(b|w) as:

HMPE(λ, λ′) =
R∑

r=1

W#
i∑

w=1

γMPE
(w,b)

∣∣∣(λ=λ′) log P(b)P(b|w) (5)

with

γMPE
(w,b) =

∂FMPE

∂ log P(b)P(b|w)
= γ(w,b)(cr(w) − cr

avg)

where (w, b) represents word w pronunciated as b. P(b) is
the likelihood of the speech data aligned to word arc (w, b).
W#

r is the words set in the lattice of the r-th utterance. Ac-
cordingly, r(w,b) is the posterior probability of the word arc
(w, b) in current lattice. cr(w) is the average phone accura-
cy of paths passing through the word arc (w, b), and cr

avg is

the average phone accuracy of all paths in lattice of the r-th
training utterance. Eq. (5) is based on a sum over word arcs
w = 1 . . .W#

r , each with start and end times.
By expanding log P(b)P(b|w) to log P(b) + log P(b|w),

Eq. (5) decomposes into two parts: AM co-training and PM
training. The analyses of these two parts are as follows.

3.1 Co-train AMs

Suppose the pronunciation b for word w consists of phones
qw1 . . . q

w
nw , then

log P(b) =
nw∑
i=1

log P(qwi )

where P(qwi ) is the likelihood of the data aligned to phone
arc qwi . If the duration of qwi and q in Eq. (3) is equal, then
P(qwi ) = P(q).

Thus, Eq. (5) becomes:

HMPE(λ, λ′) =
R∑

r=1

W#
r∑

w=1

γMPE
(w,b)

nw∑
i=1

log P(qwi )

+

R∑
r=1

W#
r∑

w=1

γMPE
(w,b)logP(b|w) (6)

As the paths passing through word arc (w, b) are equal
to those passing through any phone arc in word arc (w, b),
namely for any qwi ∈ (w, b):

γ(w,b) = γqwi

cr(w) = cr(qwi )
γMPE

(w,b) = γqwi (cr(qwi ) − cr
avg) (7)

Then the first part of Eq. (6) is:

R∑
r=1

W#
r∑

w=1

γMPE
(w,b)

nw∑
i=1

log P(qwi )

=

R∑
r=1

W#
r∑

w=1

nw∑
i=1

γqwi (cr(qwi ) − cr
avg) log P(qwi ) (8)

To keep statistics calculation consistent with that in the
standard MPE training, we will demonstrate the above for-
mula (Eq. (8)) is equal to the original auxiliary function (Eq.
(3)) with γMPE

q calculated as:

γMPE
q =

∂FMPE

∂ log P(q)

=

∑
Wi,q∈Wi

Pλ(Or |Bi)P(Bi|Wi)P(Wi)A(Wi)∑
W j

Pλ(Or |B j)P(B j|W j)P(W j)

−
∑

Wi,q∈Wi
Pλ(Or |Bi)P(Bi|Wi)P(Wi)∑

W j
Pλ(Or |B j)P(B j|W j)P(W j)

·
∑

Wi
Pλ(Or |Bi)P(Bi|Wi)P(Wi)A(Wi)∑
W j

Pλ(Or |B j)P(B j|W j)P(W j)
(9)
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The first part of Eq. (9) is:∑
Wi,q∈Wi

Pλ(Or |Bi)P(Bi|Wi)P(Wi)A(Wi)∑
W j

Pλ(Or |B j)P(B j|W j)P(W j)

=

∑
qwi ∈q
∑

Wi,qwi ∈Wi
Pλ(Or |Bi)P(Bi|Wi)P(Wi)A(Wi)∑

W j
Pλ(Or |B j)P(B j|W j)P(W j)

=
∑
qwi ∈q

cr(qwi ) · γqwi (10)

The second part of Eq. (9) equals to:∑
qwi ∈q
∑

Wi,qwi ∈Wi
Pλ(Or |Bi)P(Bi|Wi)P(Wi)∑

W j
Pλ(Or |B j)P(B j|W j)P(W j)

·
∑

Wi
Pλ(Or |Bi)P(Bi|Wi)P(Wi)A(Wi)∑
W j

Pλ(Or |B j)P(B j|W j)P(W j)

=
∑
qwi ∈q
γqwi · c

r
avg (11)

From Eq. (9)(10)(11) we have:

γMPE
q =

∑
qwi ∈q
γqwi · (c

r(qwi ) − cr
avg) (12)

Finally, from Eq. (3)(12), we know Eq. (3) is a sum of
γqwi (cr(qwi ) − cr

avg) log P(qwi ) over phone arcs, while Eq. (8)
is a sum of the same thing over word arcs. The results are
equal, namely:

R∑
r=1

W#
r∑

w=1

γMPE
(w,b)

nw∑
i=1

log P(qwi )

=

R∑
r=1

Qr∑
q=1

γMPE
q log P(q)

=

R∑
r=1

Qr∑
q=1

∑
qwi ∈q
γqwi · (c

r(qwi ) − cr
avg) log P(q)

Therefore, using γMPE
q calculated by Eq. (9), AMs are

co-trained with PMs without changing the MPE framework.

3.2 MPEPM

From Eq. (6)(7), we get the objective function of PMs using
minimum phone error criterion:

R∑
r=1

W#
r∑

w=1

γMPE
(w,b)logP(b|w) (13)

with constraints:∑
b

P(b|w) = 1 (14)

P(b|w) ∈ (0, 1] (15)

We define

γnum
(w,b) = γ

MPE
(w,b) i f γMPE

(w,b) ≥ 0

γden
(w,b) = γ

MPE
(w,b) i f γMPE

(w,b) < 0

Referring to the auxiliary function used to update weight in
the MPE training [6], we use an auxiliary function for Eq.
(13), that is:

R∑
r=1

W#
r∑

w=1

γnum
(w,b) log P(b|w) −

γden
(w,b)

P′(b|w)
P(b|w) (16)

By maximizing this auxiliary function, the objective func-
tion in Eq. (13) is optimised with constraints of Eq.
(14)(15). The detailed proofs could be found in [6]. For
all (w, b), set P(0)(b|w) = P′(b|w), where P′(b|w) is the prob-
ability in the former PMs. And the iterative formula is as
follows, in the (p+1)-th iteration:

P(p+1)(b|w) =
γnum

(w,b) + kbP(p)(b|w)∑
b γ

num
(w,b) + kbP(p)(b|w)

with

kb =

max
b

γden
(w,b)

P′(b|w)

 − γden
(w,b)

P′(b|w)

The values of P(p+1)(b|w) after 100 iterations are used as the
updated pronunciation probabilities.

The above two subsections have shown the incorpora-
tion of PMs into the MPE training. Through this, a discrim-
inative pronunciation modeling method is presented.

4. Experiments and Results

4.1 Construct Pronunciation Dictionary

We utilized the method employed in [5] to construct a pro-
nunciation dictionary for 43k Chinese words. A character
pronunciation dictionary with 7.8k pronunciations for 6.7k
Chinese characters was used, to construct a full pronuncia-
tions set with 85k pronunciations. After performing a forced
alignment of the acoustic training data, a 0.5 threshold rel-
ative to the maximum frequency of pronunciations of every
word was set to prune out low frequent pronunciations. Fi-
nally, the pronunciation dictionary used to train PMs con-
sisted of 47k pronunciations. The frequencies of remaining
pronunciations of every word are normalized to form the
initial pronunciation models.

4.2 Baseline System

Experiments were carried out on Mandarin conversation-
al speech recognition task. The acoustic training data is
about 400 hours, consisted of two parts. One is from LD-
C database including CallHome&CallFriend (45.9 hours),
and LDC04† (150 hours) training sets. The other part is 200

†LDC04 was collected by Hong Kong University of Science
and Technology (HKUST) in 2004
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Table 1 Results in CER (%).

HTest04 GDTest
baseline 49.7 50.8
MPEPM 49.0 50.5

co-train AMs & MPEPM 48.2 49.7

hours speech data collected by ourself. All the data were
recorded through the landline telephone with local service
in the real world with environmental noise. All utterances
are in Chinese Mandarin and in spontaneous style.

There were three steps for the front-end process, First,
a reduced bandwidth analysis, 60-3400 Hz, was used to gen-
erate 56-dimensional feature vectors, which consist of 13-
dimensional PLP and smoothed F0 appended with the first,
second and third order derivatives. Next, utterance-based
cepstra mean and variance normalization (CMS/CVN) was
applied. Finally, a heteroscedastic linear discriminant anal-
ysis (HLDA) [8] was directly applied to projected 56-
dimensional feature vectors into 42-dimensions.

The phone set for HMMs modeling consists of 179
tonal phones. The final HMMs are cross-word triphone
models with 3-state left-to-right topology, which are trained
via the Minimum Phone Error (MPE) criteria [6]. A robust
state clustering with phonetic decision trees is used [9], and
finally 7995 tied triphone states are empirically determined
with 16-component Gaussian components per state.

4.3 Recognition Results

There are two test sets. The first is “HTest04” collected by
HKUST and released in 2005, which comprises of 4 hours
of data with 24 phone calls. The second is “GDTest”, com-
prised of half hour of self-collected data with 354 conversa-
tions by phone.

The character error rate (CER) is used to estimate the
recognition performance, which is obtained by a one-pass
decoding [10]. The recognition results are shown in Tab. 1.
The first row is the result of baseline using a canonical lex-
icon. The second rows show the results of MPEPM without
AM co-training, while the last row is the result of MPEPM
with AM co-training. From these results, MPEPM shows its
effectiveness.

5. Conclusions and Discussion

In this work, we presented a discriminative pronunciation
modeling method based on the MPE training. We rewrote
the auxiliary function of the MPE training at word level, and
incorporated PMs into it. By doing this, we explored a way
to discriminatively co-train the acoustic models and the pro-
nunciation models in an iterative fashion. We demonstrated
that the required statistics could be obtained in the standard
MPE training. Thus, this method is easy and efficient to
implement. Finally, experimental results on Mandarin con-
versational speech recognition task demonstrated the effec-
tiveness of this method.

Since the current state-of-the-art systems make use of

Deep Neural Networks (DNNs), we would like to discuss
the possibilities of this MPEPM to be used in DNNs based
framework. Currently, there are two main approaches to in-
corporate DNNs in acoustic modeling: the TANDEM sys-
tem and the hybrid system. For TANDEM system, DNNs
act as feature extractors to derive bottleneck features, which
can be used to train traditional HMM/GMM. Thus, this M-
PEPM implementation keeps constant. For the hybrid sys-
tem, DNNs estimate posterior probabilities of states of H-
MMs. This MPEPM can be efficiently implemented within
the sequence-discriminative training of DNNs, as they are
all based on reference and hypothesis lattices, especially for
the one using the state-level minimum Bayes risk (sMBR)
criterion, which is derived from the MPE criterion.
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