/   Home   /   Newsroom   /   Research News

Chinese Scientists Generate a High-quality Wheat A Genome Sequence

May 09, 2018     Email"> PrintText Size

Bread wheat (Triticum aestivum L.), feeding more than 35% human population and providing about 20% of calories and proteins consumed by humans, is a globally important crop due to its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour.
Due to its complex polyploidy nature (hexaploid, containing A, B and D three subgenomes) and large genome size (17 Gb), the genetic and functional analysis of bread wheat is extremely challenging.
The A genome, originates from the diploid wild einkorn wheat Triticum urartu with a genome size about 5 Gb, is the basic genome of bread wheat and other polyploidy wheats. It plays a central role in wheat evolution, domestication and genetic improvement.
To illustrate the genomic structures of wheat, the wheat genome research team of State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, collaborating with the Genomic Sequencing and Analysis Laboratory of the institute, BGI Shenzhen and Keygene in the Netherland, generated a high-quality genome sequence of T. urartu by combining BAC-by-BAC sequencing, single molecule real-time whole-genome shotgun sequencing and next-generation mapping technologies.
The scientists produced seven chromosome-scale pseudomolecules, predicted 41,507 protein-coding genes, and presented an evolution model of T. urartu chromosomes.
Then they found that the collinearity originated from the ancient genome duplications in T. urartu were strongly disrupted because of extensive amplifications of transposable elements and widespread gene loss, compared to rice, sorghum and Brachypodium.
Comparative analysis with the A, B and D subgenomes of bread wheat also showed that four large chromosomal structure variations occurred during wheat evolution.
Population genomics analysis revealed that T. urartu accessions from the Fertile Crescent formed three distinct groups with different adaptation to high altitude and biostress, such as powdery mildew disease.
The genome sequence of T. urartu provides a diploid reference for the analysis of polyploidy wheat genomes, and is a valuable resource for systematically studying the genome evolution and genetic variations in wheat and related grasses. It promises to facilitate the discovery of genes conferring important traits for the genetic improvement of wheat to meet the future challenges of global food security and sustainable agriculture.
The research results were published on line in a paper in Nature with the title "Genome sequence of the progenitor of wheat A subgenomeTriticum urartu".  
Triticum urartu, the progenitor of wheat A subgenome (Image by IGDB)


(Editor: ZHANG Nannan)

Related Articles

precision medicine;genome sequence;diabetes;cancer

China Kicks off Precision Medicine Research

Jan 11, 2016

The Chinese Academy of Sciences (CAS) announced Saturday its precision medicine research plan targeting Chinese people. Precision medicine is a medical model for high-efficiency, low-cost prevention and treatment of diseases tailored to individual pati...

mustard;Brassica juncea;genome sequence

Chinese Scientists Map Genome Sequence of Mustard

Sep 14, 2016

Chinese scientists have mapped the genome sequence of allopolyploid Brassica juncea, or mustard, a vegetable commonly used in Chinese cooking. A researcher from Zhejiang University said Tuesday that the sequencing would help scientists understand and i...

dog;domestic dog;genome sequence

Chinese Scientists Unravel Origin, Global Migration of Domestic Dogs

Jan 20, 2016

Dogs were domesticated in southern East Asia 33,000 years ago and migrated to the rest of the world 15,000 years after, Chinese scientists said in a newly-published article. "Using whole genome sequences from a total of 58 canids (12 gray wolves, 27 pr...

Contact Us

Copyright © 2002 - Chinese Academy of Sciences