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An Improved Multiband-Structured Subband
Adaptive Filter Algorithm
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Abstract—Recently, a multiband-structured subband adaptive
filter (MSAF) algorithmwas proposed to speed up the convergence
of the normalized least-mean-square (NLMS) algorithm. In this
letter, we extend this work and propose an improved multiband-
structured subband adaptive filter (IMSAF) algorithm to increase
the convergence speed of the MSAF, which can also be regarded as
a unifying framework for the NLMS, MSAF, and affine projection
(AP) algorithms. The proposed optimization criterion is based on
the principle of minimal disturbance, canceling the most recent
a posteriori errors in each of the subbands. The stability con-
dition and the computational complexity are also analyzed. Com-
puter simulations in the context of system identification demon-
strate the effectiveness of the new algorithm.

Index Terms—Acoustic echo cancellation, convergence rate, sub-
band adaptive filter, subband update.

I. INTRODUCTION

A DAPTIVE filtering plays an important role in many
signal processing applications such as adaptive beam-

forming, channel equalization, and acoustic echo cancellation
(AEC). The normalized least-mean-square (NLMS) algorithm
is widely used due to its simplicity and robust performance.
However, the NLMS algorithm has slow convergence with
colored input signals [1]. Therefore, the subband adaptive
filter (SAF) [1] has been proposed to improve the convergence
behavior of the NLMS algorithm. The conventional sub-
band structure achieves some reduction in the computational
complexity and increases the convergence rate. However, its
convergence speed is still limited due to aliasing and band-edge
effects [1], [2].
To solve this problem, Lee and Gan [3] presented a multi-

band-structured subband adaptive filter (MSAF)1 algorithm
to accelerate the convergence rate for input signals having a
large spectral dynamic range. The MSAF algorithm updates
the fullband tap weights of the modeling filter using subband
signals normalized by their respective subband input variance.
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1As one of the reviewers pointed out, it was named “normalized SAF” in [3].
To highlight the multiband nature, it was called ”MSAF” in [1].

The MSAF algorithm has recently been the subject of intensive
investigation [1], [3]–[7].
Some applications such as AEC involve colored signals, and

hence require high-order filters to model long acoustic impulse
response. In such cases the convergence rate of the MSAF al-
gorithm needs to be improved. In this letter, we will extend
the work in [3] and propose an improved MSAF (IMSAF) al-
gorithm to speed up the convergence. The MSAF algorithm
is derived based on the principle of minimal disturbance by
nulling the current subband errors. Data-reuse algorithms are
considered an alternative to increase the convergence speed by
recycling the old data signal, e.g., the affine projection (AP)
algorithm [8]. Inspired by this idea, a new optimization cri-
terion is proposed based on the principle of minimal distur-
bance by canceling the most recent a posteriori errors in
each of the subbands, i.e., a total of error signals in-
stead of for the MSAF algorithm. The new algorithm is de-
rived using the method of Lagrange multipliers. The stability
condition and the computational load are analyzed. Moreover,
it is shown that the IMSAF algorithm can be viewed as a gen-
eralized form of the NLMS, MSAF, and AP algorithms. The
performance is then evaluated via computer simulation in the
context of system identification.
Throughout this letter, vectors and matrices will be denoted

by boldface symbols, denotes the transpose operator,
represents squared Euclidean norm of a vector, and takes
expectation.

II. REVIEW OF THE MSAF ALGORITHM

Consider the desired response that arises from the linear
model

(1)

where is the length-
tap-weight vector of the unknown system,

denotes the input signal
vector, and represents the system noise.
Fig. 1 shows a block diagram of the MSAF. The desired

signal and input signal are partitioned into subband
signals, and , bymeans of analysis filters . The
subband input signals are filtered by the adaptive filter to
generate the subband output signals . The subband signals

and are then decimated by a factor to generate
and . We use to denote the synthesis filter.

The notations and represent -fold decimation and
interpolation. Variables and are used to indicate the original
and decimated sequences. The a priori and a posterior deci-
mated subband errors are defined as, respectively,

(2)

(3)
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Fig. 1. Block Diagram of the MSAF.

where

denotes the regression vector for the th subband signal and
is the weight vector

of the fullband adaptive filter. We use to denote the length of
the modeling filter.
The MSAF can be obtained based on the principle of min-

imal disturbance by canceling the a posteriori errors in all
subbands at each iteration , i.e.,

(4)

The weight vector is adapted as follows [1]:

(5)

where is the step size and is a small positive constant to
avoid possible division by zeros.

III. PROPOSED IMSAF ALGORITHM

A. Derivation of the IMSAF Algorithm

From (4) we know the MSAF algorithm is obtained by min-
imizing the squared Euclidean norm of the change in the tap-
weight vector subject to the set of constraints imposed on
the decimated filter output. Motivated by the AP algorithm, we
might utilize additional recent data to update the adaptive filter.
We propose to cancel the most recent a posteriori errors in
each of the subbands, i.e., a total of error signals instead
of as in the MSAF algorithm, and then obtain

(6)

In order to obtain a compact solution, we define the following
quantities:

(7)

(8)

(9)

(10)

(11)

where is the projection order. The constraint conditions in (6)
are now expressed more compactly as

(12)

We now seek by solving the constrained optimization
criterion:

(13)

where is the 1 null matrix. The constrain minimization
problem can be solved by the method of Lagrange multipliers.
We choose the cost function as:

(14)

where is the Lagrange multipliers
vector pertaining to the constrains in (12). Taking the derivative
of (14) with respect to and setting it to zero, we obtain

(15)

Substituting (15) into (12) and using (9), one has

(16)

Solving from (16) and substituting it into (15), we obtain a
recursive relation for updating the tap-weight vector:

(17)

To avoid potential numerical instability, a regularization param-
eter is added to the diagonal elements of . There-
fore a more practical update equation of the IMSAF algorithm
becomes

(18)

where is the identity matrix with size . The weight
update of the IMSAF is similar to that of the AP algorithm; the
only difference is that the matrix of the AP algorithm is
composed of the fullband signal vectors, whereas that of the
IMSAF algorithm consists of the subband signal vectors. If the
off-diagonal elements of are negligible, (18) can
also be simplified to the form of (5). The cross-correlation items
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of two arbitrary subband signals may be ne-
glected by a properly designed analysis filter. However, the au-
tocorrelation elements can not be ignored be-
cause the correlation in subbands is also high for highly colored
signals. As a result, the off-diagonal elements of
can not be ignored.
We define as the th column vector of and as

the th element of . Equivalently, the solution of (13) can
also be expressed as [9], [10]:

(19)

where , and is the component of that is
orthogonal to , and

(20)

When the input signal is highly colored, the successive input
vectors tend to be almost parallel to each other, so the weight
estimate improves little during successive iteration [9]. From
(20), it is noted that the proposed algorithm carries out an or-
thogonalization procedure to the successive input vectors and,
therefore, speeds up the convergence.

B. Relationship to Other Adaptive Filters

In the special case , only the current subband data
are used to update the weight vector and (13) reduces to (4), so
the IMSAF algorithm reduces to the MSAF algorithm. In the
special case , the filter bank reduces to a single filter
with its impulse response given by the unit impulse and
the signal reconstruction is not required [4]. Furthermore, (13)
becomes the optimization criterion used in the derivation of the
AP algorithm, so the IMSAF algorithm reduces to the AP algo-
rithm. And in the special case where both and ,
the IMSAF algorithm reduces to the NLMS algorithm. Thus,
the IMSAF algorithm can be considered as a generalized form
of the NLMS, AP, and MSAF algorithms.
The IMSAF algorithm generalizes the MSAF along the time

axis using multiple time-domain constraints, generalizes the AP
along the frequency axis using multiple subband constraints,
and generalizes the NLMS along both the frequency axis, using
multiple subband constraints, and the time axis, using multiple
time-domain constraints. In other words, comparedwith NLMS,
the AP algorithm improves the convergence rate by data-reuse,
the MSAF algorithm speeds up the convergence by subband
decomposition that whitens the input signal, and the IMSAF
algorithm speeds up the convergence by both data-reuse and
subband decomposition.

C. Stability of the IMSAF Algorithm

We assume the adaptive filter has the same order as the real
system. The mismatch between and is measured by
the tap-weight error vector . Using (17), we
obtain

(21)

A stability analysis is carried out based on the mean-square de-
viation (MSD). Taking the expectation of the squared norm on
both sides of (21), we obtain:

(22)

where . Using (9) and (11), the subband

error signal vector can be expressed as

(23)

where is the modeling error vector. Sub-
stituting into (22) yields

(24)

In order to obtain monotonic convergence and stability,
the MSD must decrease with increasing , i.e.,

. Thus the step size is bounded as

(25)

Denoting , if we choose such
that is maximized, the fastest convergence rate is obtained
because the MSD undergoes the largest decrease from itera-
tion to iteration . Then the optimal step size satisfies

, and solving yields

(26)

In the absence of disturbance, we obtain from
(23). Thus, the condition on the step-size parameter
ensures the adaptive filter convergence in the mean-square

sense, and it is clear from (26) that the algorithm achieves the
fastest convergence rate for .

D. Computational Complexity

We now analyze the computational complexity of the
IMSAF algorithm. It should be noted that the tap-weight
vector is adapted every samples, compared to every
sample for the fullband case. It is assumed that the cost of
inverting a matrix is operations [11]. Calcu-
lation of requires multiplications using
a recursive approach. The IMSAF algorithm requires a total
of mul-
tiplications during a single sampling period , compared
to for the AP algorithm [12] and

for the MSAF algorithm [1]. Similar to
the AP algorithm, the improvement of convergence rate for
the IMSAF algorithm is at the cost of increased computational
complexity. However, it is possible to reduce the computational
complexity significantly based on dichotomous coordinate
descent (DCD) iterations [12].
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Fig. 2. Convergence characteristics of the IMSAF algorithm. (a) Learning
curves for the IMSAF and MSAF. , , ,

, AR(10) input signal. (b) Learning curves for the IMSAF and
AP. , , , , AR(10) input signal. (c) Learning
curves for the IMSAF and MSAF. , , ,
CCS input.

IV. SIMULATION RESULTS

The simulation is carried out in the context of system iden-
tification. The impulse response is generated according to

, , where is a zero-mean
white noise sequence and is the envelope decay rate. The sam-
pling rate is 8 kHz. The input signals are an AR(10) process
[1] and the composite source signal (CCS) specified by the ITU
G.168 standard. Cosine modulated filter banks are used for the
subband structure. The convergence performance is evaluated
in terms of the normalized misalignment (in dB) defined as

For AR(10) input, the re-
sults are obtained by averaging over 100 Monte Carlo trials.
In the first set of simulations, the convergence rate of the

IMSAF algorithm is compared to that of the MSAF with the
AR(10) signal. The length of the adaptive tap-weight vector is

. An independent white Gaussian noise signal
is added to the echo signal, with 30-dB signal-to-noise ratio
(SNR). The projection orders of the IMSAF are , 4, 6,
and 8. The number of subband is . We choose
for all cases to obtain the fastest convergence. From the learning
curves in Fig. 2(a), it is clear that the IMSAF algorithm pro-
vides faster convergence than the MSAF algorithm for the same
number of subband. It is also noted that larger leads to faster
convergence speed but also higher steady-state misadjustment.
This is mainly because nulling a posteriori errors will force
the adaptive filter to compensate for the effect of a noise signal
that is uncorrelated with the input signal [13]. We also note that
increasing from 6 to 8 does not significantly improve the con-
vergence speed.
In the second set of simulations, the convergence behavior of

the IMSAF is investigated for the AR(10) signal in a noise-free

environment, where the length of the real system is
and the order of the adaptive filter is . The unmodeled
tail of the response forms a disturbance to the system. The pro-
jection order of the IMSAF and AP is 2. The subband number
of the IMSAF is set to , 4, and 8. From Fig. 2(b), it can
be noted that the IMSAF algorithm exhibits faster convergence
than the AP algorithm. For the IMSAF, the convergence perfor-
mance improves as the number of subbands increase.
In the third set of simulations, we evaluate the performance

of the proposed algorithm with CCS input. CCS has proper-
ties similar to those of speech with voiced and unvoiced seg-
ments as well as pauses. We use , , and

. The projection orders of the IMSAF are ,
4, 6, and 8. Step sizes are chosen such that identical steady-state
misadjustment is achieved for all cases. As can be seen from
Fig. 2(c), the IMSAF algorithm also achieves good results for a
highly non-stationary signal in a noisy environment.

V. CONCLUSION

In this letter, we have proposed an improved version of the
MSAF algorithm based on nulling additional a posteriori er-
rors in each subband. By increasing the projection order and/or
number of subbands, the proposed IMSAF algorithm achieves
faster convergence speedwith highly correlated signals.We also
show that the IMSAF algorithm is a generalization of several
other known adaptive filtering algorithms. Simulation results
verify the validity and performance advantage of the new al-
gorithm.
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